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The idea of dispatching multiple unmanned surface vehicles (USVs) to undertake marine missions has
ignited a burgeoning enthusiasm on a global scale. Embarking on a quest to facilitate inland water mon-
itoring, this paper presents a systematical approach concerning global path planning and path following
for heterogeneous USVs. Specifically, by capturing the heterogeneous nature, an extended multiple trav-
elling salesman problem (EMTSP) model, which seamlessly bridges the gap between various disparate
constraints and optimization objectives, is formulated for the first time. Then, a novel Greedy Partheno
Genetic Algorithm (GPGA) is devised to consistently address the problem from two aspects: (1) Incorpo-
rating the greedy randomized initialization and local exploration strategy, GPGA merits strong global and
local searching ability, providing high-quality solutions for EMTSP. (2) A novel mutation strategy which
not only inherits all advantages of PGA but also maintains the best individual in the offspring is devised,
contributing to the local escaping efficiently. Finally, to track the waypoint permutations generated by
GPGA, control input is generated by the nonlinear model predictive controller (NMPC), ensuring the USV
corresponds with the reference path and smoothen the motion under constrained dynamics. Simulations
and comparisons in various scenarios demonstrated the effectiveness and superiority of the proposed
scheme.
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Note to practitioners: This paper is motivated by our ongo-
ing experiments on the USV-assisted inland water monitoring mis-
sions, which collect monitoring data for a wide range of marine
elements including water temperature, depth, salinity, biological
indexes, and bathymetry. With the aid of the USVs, the collec-
tion of monitoring data benefits from a great loss of manpower
and resources. However, the implementation of our approach
has encountered a practical challenge due to the diverse sensors
equipped on the USVs. This has resulted in certain areas being ac-
cessible only to specific USVs since they are equipped with the
required sensors. For instance, the targets that required tempera-
ture or salinity data can only be visited by the USVs equipped with
conductivity-temperature-depth profile collector. Unfortunately, ex-
isting literature on global path planning mainly focuses on homo-
geneous USVs, whereby the heterogeneous capabilities are omit-
ted. More to the problem, after planning the target sequence, the
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USVs’ practical waypoint following is challenging. Traditional way-
point following methods such as LOS-based is impossible to the-
oretically impose any constraint on the existing LOS laws, nei-
ther on the control actions nor their increments. What's more,
they have also shown weak ability for disturbance rejection, which
may hinder their practical applications. To address the abovemen-
tioned problems, we propose a novel systematic approach that
combines global path planning and path following. Using the pro-
posed scheme, global planning optimality under heterogeneous
constraints and appropriately maneuvering the USV with a desired
response within various physical constraints can be achieved si-
multaneously. We believe our work could benefit the readers who
are currently conducting research in deploying multi-agent sys-
tems for real-world engineering problems.

1. Introduction

With artificial intelligence at the helm, the advancements of
Unmanned Surface Vehicles (USVs) have been propelled to new
heights, charting a course towards a brighter future of autonomous
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Fig. 1. Illustration of a typical monitoring mission.

exploration and unlocking the secrets of aquatic world [1-5].
Specifically, much attention has been given to exploit USVs to
perform ocean and marine tasks in hostile or human-inaccessible
areas, e.g., maritime patrolling, coastal guarding, and maritime
search and rescue [6-8]. Moreover, USVs can be applied to measure
the environment data of inland water, which is crucial for achiev-
ing environmental sustainability and securing water resources [9-
16]. The water monitoring mission follows different purposes, such
as radioactive material detection [17], measuring basic marine ele-
ments (currents, temperature, and salinity) [18,19], biological in-
vestigations [20], bathymetry surveying [21], as well as observ-
ing water columns or warming trend to reveal ocean carbon cy-
cle [20,22,23]. In order to successfully complete missions for wa-
ter monitoring, the planning and control algorithms of USVs have
always been the keys to such problems [24]. On the one hand,
the global planning algorithm aims to optimize the path sequence
by assigning task points to multiple USVs in a manner that min-
imizes energy consumption and equalizes the workload distribu-
tion among USVs [25,26]. On the other hand, the waypoint follow-
ing control method guides the USVs to successfully visit the task
points [27,28]. Therefore, to ensure efficient and reliable operation
for water monitoring, the global path planning and path following
problem should be addressed properly.

Global path planning for USVs aims to compute the optimal
routes based on the distribution of monitoring targets, require-
ments of the mission, and settings of environment surroundings
[6], see Fig. 1. Prior research has traditionally equated global path
planning problem with the classical traveling salesman problem
(TSP), wherein a set of mission targets are equally prioritized for
visitation and the objective is to determine the shortest possi-
ble sequence of waypoints [25,29]. The Multiple Traveling Sales-
men Problem (MTSP), which can be defined as finding the short-
est route for multiple USVs, is introduced when there are various
USVs involved. TSP-variants are usually non-deterministic polyno-
mial (NP-hard) problems [26,30]. These problems are for which,
even in theory, no shortcut or algorithm is possible to lead to a fast
and optimal solution. To obtain an optimal solution, an exhaus-
tive analysis of all possible outcomes is required, which is com-
putationally intensive. Consequently, heuristic approaches such as

evolutionary algorithms (EA), ant colony optimization (ACO), and
particle swarm optimization (PSO) are ideal for addressing these
problems since they can provide satisfactory sub-optimal solutions
with comparatively low computational burden [25,31-34].

Presently, booming academic and technological advancements
pertaining to the global path planning of USVs have emerged in
the latest research works. Considering the distribution of the tar-
gets, [25] used an orientation angle-based grouping strategy to en-
hance PSO for water quality detection and sampling. Compensat-
ing for the inherent shortcomings of conventional GA including
slow convergence and premature, [34] proposed the multiple off-
spring GA for the global path planning of unmanned surface ve-
hicles. To navigate a USV in a real maritime environment, a se-
ries of studies on the implementation of improved particle swarm
optimization have been carried out by [30,35]. By minimizing the
energy consumption per unit time in multiple task locations, a
chaotic and sharing-learning particle swarm optimization (CSPSO)
algorithm is proposed [36]. To solve the multiple-waypoint path
planning for survey USVs, a discrete group teaching optimization
algorithm (DGTOA) is devised by [37]. Enhancing the global search
ability for unmanned surface vessel path planning, [26] devised an
improved differential evolution particle swarm optimization algo-
rithm (DePSO). In conjunction with self-organizing map (SOM), an
improved genetic algorithm is studied by [38] to address the path-
planning problems for a multiple unmanned surface vehicle (USVs)
system. However, MTSP-variants are difficult to solve since they
are non-convex [39]. Existing meta-heuristic methods feature low
convergence speed and may also fall into local optimization easily.
Thus, a more effective combinatorial optimization method should
be devised for the path planning problem, with an emphasis on
improving the global search capability through the integration of a
convenient and effective mechanism [39].

Moreover, one crucial aspect that has rarely been addressed
by current studies is the heterogenous nature pertaining to the
USVs' capabilities. In essence, the abovementioned MTSP-variant
is an abstraction of the practical problems in which multiple ex-
ecuting individuals (homogeneous agents) are involved and share
a common workspace (target points) [25,30,34-37]. However, indi-
viduals have the same workspace in real-world problems. In some
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cases, the targets of individual USVs are not the same but over-
lap with each other. Thus, each USV has to perform not only the
common tasks that can be accessed by any of them but also com-
plete the tasks that correspond to their exclusive capabilities. In
water monitoring missions, since the USVs are equipped with dif-
ferent types of sensors, some areas should be only visited by one
specific type of USV. For instance, the targets that require temper-
ature or salinity data can only be visited by the USVs equipped
with conductivity-temperature-depth profile collector. Such a prob-
lem is frequently encountered in real-world applications, yet there
is quite limited research available on it. To the best of our knowl-
edge, the global path planning problem of heterogeneous USVs is
still an open and vital topic at the current stage.

In addition to global path planning, a feasible waypoint tracking
strategy ensures the USV to access the reference target sequence
as precisely as possible, thereby contributing to successfully com-
pleting the missions [28,40]. Waypoint tracking is similar to the
straight-line path following problem, there are three objectives:
(1) minimizing the cross-tracking error along the reference path
and real trajectory; (2) achieving smooth turns and avoiding dras-
tic maneuvers; and (3) maintaining a constant surge speed [41,42].
Previous studies have divided the traditional path following meth-
ods into two separate modules in a cascade structure: the guidance
module and a low-level controller [40,41]. On the one hand, the
guidance module is in charge of producing the set points for the
heading angle and forward speed along with their corresponding
time dependencies, such that the USV should follow the desired
path and adhere to the time restrictions for the desired forward
speed. The low-level module, on the contrary, has a controller that
works with the propellers to track the set points that the guidance
layer provides. As a result, in the conventional path following prob-
lem, the low-level controller concentrates on the dynamics while
the guidance module concentrates on the kinematics [27,40].

In the literature, many different strategies have been proposed
for the path following of USVs. For the guidance module, a well-
known method for path following of straight lines is the line-of-
sight (LOS) guidance, which is based on the approach of experi-
enced helmsmen who steer the vessel toward a point lying at a
constant distance ahead of the ship along the desired path. LOS
has been enhanced over the years, including application to Dubins
paths [43], compensating for the drift effect [44], rejection of se-
vere ocean disturbances [45], combination with fuzzy logic system
[46], and solving the large curvature path following [47]. As for
the low-level control module, extensive research has taken place
in the past using ideas from almost all branches of control engi-
neering: robust control [41], sliding mode control [48], deep rein-
forcement learning and neural network [49-51], and backstepping
control [52]. However, traditional control strategies are usually lim-
ited by the constraints on states as well as their increments in real
mechanical system, and none of the above-mentioned works has
considered the dynamic bounds explicitly. Moreover, since tradi-
tional path following schemes used to maneuver the USV along
the prescribed path are designed separately, it is difficult to the-
oretically impose such dynamic limits on the traditional methods,
neither on the control actions nor on their derivatives [27,40].

As observed from the foregoing works, domestic and foreign re-
searchers undertook a series of studies on the global path planning
of USVs and path follow problems. However, it should be noted
that past research has certain shortcomings: (1) Since existing lit-
erature mainly focuses on the global path planning problem of ho-
mogeneous USVs, a general problem model for the heterogeneous
USVs is urgently desirable; (2) We are of the opinion that there
is still room for improvements in combinatorial optimization ap-
proaches to solve the non-convex problems such as MTSP-variants.
A more effective combinatorial optimization method needs to be
specifically designed to facilitate the solutions. (3) Traditional guid-
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ance and control schemes are separated dynamics, which is impos-
sible to theoretically impose any constraint, neither on the input
signals nor on their control increments.

Motivated by the considerations mentioned above, this paper
explores the global path planning for heterogeneous USVs, and
their path follow problems in the context of the water monitoring
mission. The main contributions are illustrated as follows:

e A novel global path planning and waypoint following frame-
work is proposed to formulate path-planning and path-tracking
in an organically way. Augmented practicability has been
achieved by extensive simulation and experimental evaluations
under complex environments.

An extended multiple travelling salesmen problem (EMTSP) is
established by bridging the heterogeneous nature and various
disparate constraints jointly, providing a systematic model for
the global path planning of multiple heterogeneous USVs.
Incorporating the greedy randomized initialization and local ex-
ploration, we propose the Greedy Partheno Genetic Algorithm
(GPGA) to consistently address the global path planning. GPGA
merits strong global searching ability and facilitates local escap-
ing simultaneously. In such a case, the underlying optimization
problem is fully exploited, and it converges quickly to generate
optimal waypoint sequence.

With the aid of the proposed nonlinear model predictive con-
troller, reference targets can be properly tracked by virtue of
the NMPC strategy where robust maneuvering is ensured by re-
specting USV’s physical constraints and external disturbances,
thereby contributing to the successful completion of water
monitoring.

The remaining sections of this article are organized as
follows. The problem formulation is described in Section 2.
Section 3 presents the global path planning algorithm and NMPC
design. The superiority and efficiency of the proposed framework
is verified through illustrative simulations in Section 4. Finally, the
concluding remarks are given in Section 5.

2. Problem formulation

The overall framework of the problem consists of two mod-
ules, i.e., extended multiple travelling salesman problem (EMTSP)
and path following problem. The first module aims to obtain a
multi-target cruise permutation, which provides USVs with a se-
quence traversing all non-repeating targets. In this process, the
heterogeneity of the targets and USVs is considered. Based on
the planned target sequence, the second module guides the USVs
traversing all target points through an ocean environment while
keeping the tracking error as small as possible.

2.1. Heterogeneous global path planning problem

2.1.1. USV model

Suppose the set of the USVs is denoted by U=
{Ui, Uz, Us, ..., Uy} k=1,2,3, ..., Ny, and Ny is the num-
ber of the USVs. Due to the various types of the equipment
onboard, the first attribute lies on the functionality of the USVs.
Suppose the USV has the attribute of the exclusive functional type,
which is denoted by FK={F, K. ....Fy}, k=1.2, 3, ..., Ny,
where N is number of the types. It indicates that USV U, pos-
sesses the unique capability of executing a specific type of task,
e.g., the mapping mission must be performed by the USVs with
surveying devices onboard while the attacking mission must be
completed by USVs with weapons.

2.1.2. Task model
Suppose the set of the tasks is denoted by T;=
(T, &, B,..., Ty,}, and Ny is the number of the targets. To
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be in accordance with the USVs’ functions, the task set is di-
vided into Nr + 1 disjoint nonempty sets, i.e., tasks with common
functional type FC/ and tasks with exclusive functional type F/,

VF' e {F, E,. ..‘,FI\’,F}. The common tasks can be visited by any

USVs while the exclusive tasks can be only accessed by specific
USVs, and it is formulated as follows:

FE=F' orF*=F' iel1,2, ..., Np, k=1,2, ..., Ny. (1)
2.13. Problem statement

To determine the task sequence, an extended multiple travel-
ing salesman problem (EMTSP) is formulated, in which the het-
erogeneous nature is considered. Suppose the set of the USVs is
denoted by Uy = {U;, Us. Us, ..., Uy,}, and the target set is de-
noted as T, ={Ty, T, T3,..., Iy}, where Ny < Nr. It can be for-
mulated over a complete digraph G($, E), where vertex set § =
{0, 1, 2, ...,Nr — 1} numbers the tasks; and each edge in (i, j) e
E, i # j, is associated with a weight w;; representing a visit cost be-
tween two tasks i and j. The binary variable x;;, =1, i # j, i, je 9,
k e Z, if the kth USV passes through edge (i, j); and otherwise
X;jx = 0. Consequently, the tour cost w;; is obtained by calculating
the distance between tasks i and j, which gives:

wij= T =Tl (i. j)<€E. (2)
Then the total cost of the USV U, is:
Ny—1Np—1
D= > ) X (3)
i=0 j=0

Based on the aforementioned models, the formulated multi-
objective problem is stated as follows:

minF = fi + f, (4)
Ny
fi=) D (5)
k=1
fo= Max D, — MinD, (6)
—— ——

k=1, 2, .. Ny I=1,2, .. Ny
subject to the following constraints:

wij =T =Tl (i. j)€E 7)
Ny—1Ny—1
De=)_ > oijij (8)
0 j=0
Nr
D Xo=1,ien k=12, ..., Ny (9)
i1
Nr
D Xjok=1, jen k=12, ..., Ny (10)
i1
Ny Np—1
SN k=1, i# j jen\[0) k=1.2, ..., Ny, ifa=0
k=1 i=0
(11)
Fk=F ' 'orF*=F"' ie® k=12, ..., Ny. (12)

Remark. 1. The constraints are expounded as follows. Egs. (7),
(8) denote the expressions of the visit cost w; ; and total cost of a
USV Dy. Egs. (9), (10) indicate the every USV starts from and re-
turns to the depot after the tour. Eq. (11) denotes each task except
depot must be visited by a USV exactly once. Eq. (12) indicates that
the USV must visit the its own exclusive task or a common task.
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Yn Desired path y(s)

Fig. 2. Geometry of the coordinate system.

2.2. Path following problem

This section briefly describes the three-DOF maneuvering model
for the motion of an USV moving in the horizontal plane and a
basic statement of the path following problem. For more details,
the reader is referred to [53].

2.2.1. Basic assumptions

The general model of a typical USV has six degree-of-freedom
(DOF): surge, sway, yaw, heave, roll, and pitch. These can be sim-
plified into a 3-DOF model with the following assumptions:

Assumption 1. The motions that generated by wind, waves, and
currents including heave, roll, and pitch are negligible.

Assumption 2. The hydrodynamic damping is linear.

Assumption 3. The control actions consist of surge force and yaw
moment.

Assumption 4. The inertia-related and damping-related matrices
are diagonal [54].

Remark 2. Nonlinear damping is not considered, since it would in-
crease the complexity of the controller without contributing to im-
proving the result.

2.2.2. Vessel model
Based on the assumptions, the 3 DOF kinematic and dynamic
model of a surface vessel in a horizontal plane (see Fig. 2) is:

i =R(y)vr

Miy; + C (0 )iy + Dvy = T (13)

where 5 =[x, y, w]T denotes the position coordinates and head-
ing angle in the earth-fixed inertial frame {n}, vy = [ur, v, r]T =
v — v includes the relative velocities in the body-fixed frame {b},
T=[ty, O, Tr]T gathers the vector of control signals. It is worth to
mention that the underactuated configuration is considered in this
paper since the surge force and yaw moment are the only control
forces. The rotation matrix R(i/) denotes the transformation be-
tween the body-fixed frame and the earth-fixed inertial frame:

cos(¥) —sin(y) 0
R(¥) = | sin ¥)  cos(¢) 0. (14)
0 0 1
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The mass matrix M = MT > 0 includes the inertial features of
the USV and hydrodynamic added mass. The matrix D includes
the damping coefficients. The Coriolis matrix C, which includes the
Coriolis and centripetal effects, can be derived from M. According
to the forementioned assumptions, the matrices M, C, and D can
be expressed as:

m —XL', 0 0 mmn 0 0
M=| 0 m-Y, 0 |=|0 mym O
0 0 I, — Nr 0 0 mss
) 0 —(Mm—Yy)v
C= 0 0 (m-Xyu
(m-=-Y)v —-(m-X,u 0
i 0 0 —MyV
= 0 0 mnu
mpvV —mpu 0
dn 0 0
D=|0 dp 0|, (15)
0 0 ds3

where the parameters mj;, myy, and ms3 include the ship in-
ertia including added mass effects, dy;, dy;, and d33 denote the
damping-related coefficients, X;, Y;, and N; are the hydrodynamic
coefficients, and m and I, denote the mass and rotational inertia of
the underactuated marine vehicle, respectively.

Assumption 5. The body-fixed coordinate frame {b} (body frame)
is located at a point (xj, 0), at a distance x; from the vehicle’s
center of gravity along the center line of the ship.

Therefore, the 3-DOF model is expounded as:

X =ucosy —vsiny

y=usiny +vcosy

J=r
m
g M2y duy 1 T
my my my
_ M, dn
mpo myy
_Mu-me, dn, 1 T, (16)
ms3 Mms3 Mms3
where
tu=T+T, = (T,—T)B/2. (17)

Tp, Ts, and B refer to the control output of port propeller, star-
board propeller, and beam length of the USV.

Considering the input saturation, T = [y, O, ‘L'r]T denotes the
actual control signal produced by the propellers, and t is written
as

Timaxs X > Tumax
X, Tumin <X = Tumax (18)
Tumins X < Tumins

Sat,.(x) =

where T,ngxand 7,.,;; denote the upper and lower bounds, respec-
tively, where x = u, r. The desired control inputs should be x and
the actual control inputs should be 7.
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2.2.3. Problem description

Consider a global planner delivers the USV with a set of way-
point permutations or reference path. The USV should then prop-
erly navigate through the path that these waypoints have defined.
Following a predetermined path without regard to time restrictions
is referred to as path following [53]. An underactuated vessel could
complete this mission with total velocity U; = +/u? +v2 in the
NED frame is tangential to the path. It is worth noted that the pri-
mary distinction between the trajectory tracking task and the path
following task is that the path following task’s path is elements
that make up by a generic variable rather than time. This indicates
that the vehicle is not necessary to arrive at a precise place along
the curve at a particular time, but rather it must converge to the
path and proceed through it at a constant speed.

To solve the aforementioned issue, a new reference frame is
generated at the desired path y(s) = {(x(s), y(s))|s € R}, where s
is a scalar parameter. and travel along the curve with a constant
speed U > 0. According to the definition, let’s consider a virtual
frame (VF) moves along y (s). For a waypoint p along the curve
of the origin of VF, which we call x(s), y(s) is defined by the pa-
rameter s, and the path angle is i (s). Now, objectives of the path
following problem can be illustrated as:

limx, =0 (19)

t—o0

tlim Ye=0

tlim Ye=0
where

Xe cos(¥(s)) —sin(y(s)) O
Ye | = | sin(¥(s)) cos(¥(s)) O
0 0 1

e

X —X(s)
y=y@s) |. (20)
v —v(s)

where Xe, ye, and ¥, represent the position and course angle error
between the marine vehicle and the path.

3. Methodology

The general framework of the methodology is illustrated in
Fig. 3.

3.1. Greedy Partheno Genetic Algorithm

In this section, we propose the Greedy Partheno Genetic Algo-
rithm (GPGA) and introduce how it solves the proposed EMTSP ef-
ficiently. Partheno genetic algorithm (PGA) is a modified version
of GA that produces offspring through parthenogenesis. In lieu
of conventional GA’s mutation and crossover operators, PGA uti-
lizes a series of operators on a single chromosome to produce off-
spring. Specifically, the crossover operator plays a crucial role in
GA, whereas the mutation operator is typically regarded as an as-
sisting operator. In PGA, however, the crossover operator is elimi-
nated, and the mutation operator is considered the main operator.
Consequently, PGA is more straightforward than GA in genetic op-
erations, and initial population diversity is optional.

3.1.1. Dual-coded chromosome

The existing single chromosome and break-point type chromo-
some coding schemes are not suitable for EMTSP due to its het-
erogenous feature. To this end, we propose a dual-coded chromo-
some type that is decimally coded, i.e., task and USV chromosomes
with the individual length being Ny — 1. The depot for all USVs
is not coded in the chromosomes and is added to the final solu-
tion to meet the constraints. The first chromosome has a permuta-
tion of Ny — 1 tasks while the second assigns a USV to each of the
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Fig. 3. Framework of the proposed method.

Exclusive for USV 1 Exclusive for USV 2

|
Task chromosome 9 n n

Common tasks

Exclusive for USV 3

Fig. 4. Chromosome representation.

common and exclusive tasks in the corresponding position of the
first, following the task-USV matching relationship represented by
Eq. (12).

A coding example of the chromosome with Ny = 10 and Ny =
3 is shown in Fig 4. Gene 1, 2, and 3 in the task chromosome are
exclusive tasks for USV 1, gene 4 and 5 are exclusive for USV 2,
gene 6 and 7 are exclusive for USV 3, respectively. It represents
the task-USV matching relationship that must be met. The com-
mon tasks are genes 8-10 that can be accomplished by any USV.
As denoted in the chromosome, task 2, 10, 1, and 3 (in that se-
quence) are visited by USV 1. Similarly, task 9, 5, and 4 (in that
sequence) are visited by USV 2, and task 8, 7, and 6 are visited by
Usv 3.

3.1.2. Fitness function

With GPGA, the roulette selection is no longer used, and the
fitness value is now calculated as the sum of the total distance and
the difference between the maximum and minimum distances., see
Eq. (21). The smaller the fitness function is, the better the quality
of the individual is.

Ny
F=Y"Di+| MaxD, — MinD, (21)
k=1 —

k=1, 2, .. Ny I=1,2, ... Ny

3.1.3. Greedy randomized initialization

The GPGA begins its search with an initial population P of
p high-quality solutions, often known as elite solutions. To de-
velop an initial population, we generate a feasible solution using
a greedy randomized heuristic. The initialization is illustrated by
the following steps: 1) Use the exclusive task set to construct a
subtour for each USV; 2) distribute the common tasks among the

Algorithm 1 Greedy randomized initialization.

1: Input: Exclusive task sets {E;, E,, Es,..., Ey,}, common task set C
2: Output: p% feasible solution

3: p<¥

4: % Build Nr partial routes with exclusive tasks

5: for k=1:Np do

6: . < {0}% Initiate the route with task 0

7: while E, # ¢ do

8: Randomly select task i from Ej

9: Insert task i into r, with minimal distance increase
10: Remove task i from E;

11: end while

12: p < pin}

13: end for

14: % Dispatch the common tasks C\{0} among N partial routes
15 C <C\{0}
16:  while C' # ¢ do

17: Randomly select task j from C’

18: Insert task j into route p with total minimal distance increase
19: Remove task j from C’

20: end while

21: return p

Ny subtours to get the solution. The pseudocode of the greedy ran-
domized initialization is shown in Algorithm 1.

Initiating the route with task O is the first step to create the
k-th partial route r, (lines 5-13). Next, uniformly selected exclu-
sive tasks from E, are introduced into r, each one at a time, with
the purpose of maximizing the route distance reduction. The first
step terminates when each salesman’s exclusive cities is entered
into the corresponding route, yielding a partial solution p made up
of Nr partial routes. The second phase (lines 15-20) involves uni-
formly processing the common tasks j from C\{0} and inserting
them, one at a time, into a route of the partial solution p so as to
minimize the increments of the distances of the solution.

3.14. Local exploration

When it comes to GPGA, local exploration is a crucial compo-
nent that aids drive the discovery of solutions for quality improve-
ment. GPGA uses a special method that clusters the tasks near to
one other to examine local exploration and generate a better solu-
tion. The procedure is illustrated in Algorithm 2.

By clustering the tasks adjacent to each other, the exploration
procedure can locally improve the solution optimality. P4, and Pg
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Algorithm 2 Local exploration.

1 Input: Two randomly selected chromosomes Py, Py
2 Output: new chromosome P-
3 L = Py.length()

4: flag = rand{-1, 1}
5: k=rand(1, L), ke Z
6: P =[k]

7 while L > 1 do

8 if flag==1 then

9: g4 = Py.Adjacent (k, 1)% Adjacent(k, 1): front to back
10: gg = Pg.Adjacent (k, 1)

11: else

12: g4 = Py.Adjacent (k, —1)% Adjacent (k, —1): back to front
13: gp = Pg.Adjacent (k, —1)

14: end if

15: Py.pop(k), Ps.pop(k), flag=rand{-1, 1}

16: da = Ik, gall

17: dg = [k, gzl

18: if d4 < dp then k=g,

19: else k=gg

20: end if

21: P-.push(k)

22: L = Py.length()

23: end while
24: return P-

Randomly select a
USV chromosome

Fig. 5. Example of local exploration.

represent two randomly selected chromosome and the new chro-
mosome is produced in various exploration directions with respect
to the flag value. Let us take P, (see Fig. 5) as the parent, k as 3,
and flag as 1, the exploration starts from front to back, thereby re-
sult in the next nearby task to k, i.e., 6. On the contrary, if we take
flag as —1, the exploration starts from back to front in P4, and the
previous task adjacent to k is found, i.e., 9. The same applies to Pg.
An example is shown in Fig. 5, whereby the task 1, 2, and 3 are ex-
clusive for USV 1, 2, and 3, respectively. We take k = 3 as the start
and flag = 1 (Suppose flag will not change in this case).

The procedure of the local exploration is illustrated as follows:

Step 1: Randomly choose two individuals P, and Pg.

Step 2: Generate a chromosome based on Algorithm 2 and ran-
domly choose a USV chromosome as the new USV chromo-
some.

Step 3: Check if each exclusive task is assigned to a correct USV
and correct the wrong assignments if any.

Step 4: Rationalize the sequence and rank the genes by task
order and category.

3.1.5. Mutation operators

In order to prevent the search process getting trapped in a local
optimum, the mutation operator is implemented. In this study, we
develop four alternative mutation operators to increase the num-
ber of chromosomal variant forms and permutations available to
the search process, hence increasing the likelihood of it to escape
the local optimum. If a mutation is being selected in the children’s
chromosome, each of the four could be selected.

Swap mutation: Two tasks i and j, i < j, i, j€$ on task
chromosome are firstly randomly selected. Then, the two genes on
the selected points are exchanged, as shown in Fig. 6(a).
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(a) Swap mutation

{1,2,3,4,5,6,7}

(b) Invert mutation
{1,2,3,4,5,6,7}
!

{1,2,6,4,5,3,7} {1,2,6,5,4,3,7}

(¢) Scramble mutation (d) Insert mutation
{1,2,3,4,5,6,7%  {1,2,3,4,5,6,7}

! ~
{1,2,6,3,5,4,7} {1,2,4,5,6,3,7}

Fig. 6. Mutation operators.

Invert mutation: Two tasks i and j, i < j, i, j€$ on task
chromosome are firstly randomly selected as the subtour. Then, the
order of the subtour between i and j is inverted, see Fig. 6(b).

Scramble mutation: Two tasks i and j, i < j, i, j € $ on task
chromosome are firstly randomly selected as the subtour. Then, the
order of the subtour between i and j is scrambled, see Fig. 6(c).

Insert mutation: One task i, i € § on task chromosome is ran-
domly selected, removes it from the chromosome, and inserts it in
a randomly selected place, see Fig. 6(d).

The process of mutation of the GPGA are described as follows:

Step 1: Select five members randomly from the current popu-
lation who have not already been chosen before.

Step 2: Find the one has the best fitness value in the 5 mem-
bers.

Step 3: Generating a temporary population that consists of 5
members. Each of the individual is assigned to the value of
the individual selected in step 2.

Step 4: Generate 2 random points i and j, or the insertion lo-
cation i.

Step 5: Mutate each individual in the test group created in step
3 in the following procedures:

1) The first one will stay the same.

2) The second one will mutate by swapping.

3) The third one will mutate by inverting.

4) The fourth one will mutate by scrambling.

) The last one will mutate by inserting.

) Check if each exclusive task is assigned to a correct USV and

correct the wrong assignments if any.

(
(
(
(
(5
(6

Step 6: Merge the generated population into the original.
Step 7: If all individuals in the current population have been
selected, then move on; otherwise, return to step 1.

Swap, Invert, Scramble, and Insert are all PGA mutation pro-
cedures that find their way into GPGA as well. Therefore, GPGA
shares the same benefits as PGA. Additionally, step 5 ensures that
the best individual identified in step 2 will be passed on to the
next generation. New individuals will be generated by altering the
finest possible one in several ways. Some of the new individuals
are produced by changing the route of the best individual. Also, a
few are made by adjusting the best individuals’ USV-task matching
relationships. Others are produced by altering both produces. In
this way, the mutation operation takes into account both the route
sequence and the matching relationship. Additionally, since the se-
lected individual to be altered to generate children is a relatively
decent individual, step 5 ensures that the algorithm will recognize
the second-best options in the iterative process. The foregoing sug-
gests that GPGA outperforms over PGA in both global search capa-
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‘ Dual-encoding ‘
]
Greedy randomized
initialization
i
Evaluate fitness and

select
¥

Y

Terminal? End
\'N/

v v
Mutation operation ‘ ‘ Local exploration ’

[ |
¥

Merge population

|

Evaluate fitness and
select

Fig. 7. Flowchart of GPGA.

bility and local escaping ability. Generally speaking, GPGA makes it
simpler to arrive at the optimal potential solution.

3.1.6. Algorithm flow

For an objective function F(X), GPGA will find an X* such that
VX, F(X*) < F(X). The proposed GPGA are illustrated as following,
see Fig. 7:

(1) Generate the initial population using the greedy randomized
initialization.

(2) Evaluate the fitness value of each individual Xl:g (g is the
number of current generations, i is the index for individual)
in the initial set. The scheme of elitism dictates that the one
with the highest fitness will be replicated and labeled as X*.

(3) Implement mutation and local exploration using the strate-
gies depicted in Sections 3.1.4 and 3.1.5 to produce offspring.

(4) Evaluate the fitness value of Xf“ in the new generation. If
F(Xig“) < F(X*), leg” is replicated and labeled as X*.

(5) If the terminal condition holds, the best answer, X*, should
be exported or set g = g + 1, then turn to (3).

3.2. Nonlinear model predictive control

3.2.1. State space model

Tracking error (Xe, y.) minimization is the primary goal of
NMPC control during path-following. In addition, it is preferred
that the USV’s course angle corresponds to that of the path angle,
guaranteeing that . converge to zero. Hence, combining the er-
ror dynamics and USV dynamics, we introduce the following state
space model:

Xe =ucos(y — Y (s)) —vsin (¥ — ¥ (s))
Ye = usin(y — ¥ (s)) +veos (¥ — ¥ (s))
Ve=r

X=1ucosy —vsiny

y=usiny +vcosy
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.om d
U= —2yr_ 1y +d4
my m
m d
— M ﬁv-ﬁ-dz
my; myy
mpy —m d
== T2y Brids. (22)
ms3 ms3

Therefore, the vessel model is written in a compact form as:
2= f(®) +gi(®u+gE)w, (23)

where X =[Xe, Ye. Ve, X, ¥, U, 1, r]T is the state vector, u=
[Tu, rr]T is the input vector of surge force and yaw moment, w =
|dy, dy, d3]T is the disturbance on surge, sway, and yaw, g; (x) and
g,(x) are the control and disturbance configuration matrices, re-
spectively, with the following structure:

000 00 - 0o of
— m
&%) = [o 0000 0 0 m‘J

0 0 0 cos Y sinyr

0
_ 05><3 _ S?:l]:// Czlszfﬁ
) PO R .

o

o

As a result of the lack of a sway control force created by the
actuators, the controller is unable to reject the disturbance in the
sway direction for the undereducated configuration. By the defini-
tions illustrated in [43], the heading angle Y in the state vector
should be replaced by the course angle yx, since in the presence
of an external force in the sway direction, the vessel will not be
able to attain zero tracking error for the heading angle. A nonzero
sideslip angle will result regardless of the heading angle, but the
resulting force component will counteract the sway disturbance
that would have happened had the sideslip angle been zero. Based
on that, the state vector is rewritten by

X=[Xe, Ye» Xe» % Y, U, V, T]', (25)

where xe.= x — xr is the tracking error which considers the
sideslip angle.

3.2.2. NMPC design

By discretizing the continuous-time model in Eq. (23), we ob-
tain the dynamic system under the control of the proposed NMPC.
As a result, we may express the desired control system'’s discrete-
time model as:

x(k+1) = f(x(k). u(k), w(k)). (26)

Here, the state x is comprised by the error and vessel dynamics,
and the input u is the input vector.

Moreover, in contrast to existing LOS-based guidance strategies,
the NMPC framework presented in this paper is able to consider
physical constraints of the mechanical system. We set low-level
controller limitations on both velocity and the rate of change in
surge and heading angle. Hence, the system should satisfy:
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Thus, nonlinear model predictive control (NMPC) is interpreted
as the online acquisition of state feedback u(k) via a least-squares
(LS) optimum control problem, whereby the objective function pe-
nalizes the amount by which the system’s inputs and states deviate
from their reference paths. It is expressed as:

Tpmin = Tp = Tpmax

’I:gmin E TS S T;max

$(x(k). u(k)) >0, vx(k). u(k),

N-1
min  Jy(x. u) =Y $(x(k). u(k))+F@&xN)). (28)
k=0

x(k), u(k)
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where $(x(k), u(k)) is the stage cost function and F(x(N)) is the
terminal cost function, N > 0 is the length of both the prediction
and control horizons. The stage and terminal cost are defined as:

$(x(k). u(k)) = |x(k) — x(k)lq + |u(k)|r (30)

Fx(N)) = [&(N) = %(N)|p. (31)

Here Jy is designed cost function, consists of the stage cost §
and the terminal cost F, the predictive horizon is denoted as N,
xr(k) and x;(N) are the reference states of the path and predicted
reference states, Q, R, and P are positive semidefinite weighing
matrices. Control actions are penalized in order to discourage the
application of high-energy, which could cause the system to be un-
stable.

3.2.3. Solver

This paper uses the CasADi software to solve the NMPC problem
(28) subject to the restrictions given by (29). CasADi is a C++ pro-
gram that can model and solve optimization problems with a great
deal of flexibility, all while generating extremely efficient C++
code for real-time implementation and MATLAB executable (mex)
files, used for simulation with MATLAB. It finds widespread use
in fields like industrial control and robotics. In particular, nonlin-
ear programming (NLP) solvers take a shooting-based approach to
dynamic optimization. We use the direct single-shooting method

1

Fig. 13. USV Otter.

since our investigations showed that the solution speed of the di-
rect single-shooting approach is greater than that of the multi-
shooting method when the number of prediction horizon steps is
less than 30.

The solving process is illustrated as follows:

Step 1: Set number of sampling instants in the time prediction
horizon N, and the sampling time T.
Step 2: Set weight matrices Q, R, P.
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Fig. 14. Tracking results.

Step 3: Set model constraints.

Step 4: Set state references xr(k), x(N).

Step 5: Get the current value x.

Step 6: Solve the NLP problem Eq. (28), and take the optimal
control input vector [ug, uq, Uy, ..., uy_1] and the pre-
dicted states [xg, X1, X3, ..., Xn_1].

Step 7: Apply the first element ug, and go to Step 5.

3.2.4. Stability

Despite numerous studies on the asymptotic stability of the
NMPC problem, creating acceptable conditions remains an unre-
solved challenge that may make online optimizations more com-
plex and time expensive to accomplish. Hence, we only discuss the
stability concerning our model. According to a series of studies in
[55-57], stability can be ensured for finite horizon problems under
several conditions. They are presented as following:

1. u is compact, and x is connected and contains the origin in the
interior of u x x.

2. Ju € U which makes f(xy, u) = x;.

3. Objective function J should satisfy J(xr, u) =0, from u € ¢/ ob-
tained from the second assumption.

Because there are no further limitations on the states in our
problem, we may assume that the feasible set always has the ori-
gin in the interior via simple axis transformation. Typically, linear
inequalities are chosen as control constraints, so # is a compact
set. For the second assumption, it is easily checked by observing
the USV system. The third assumption will be satisfied as long as
the cost function J is the quadratic, as Eq. (30).
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Table 1
Setting of test instances.

Instance Number of tasks Number of salesmen
Eil51 51 3
Berlin52 52 4
Eil76 76 4
Pr76 76 5
Rat99 99 6
Rat99 99 7

4. Results and discussion

To evaluate the proposed strategy, several illustrative simula-
tions are conducted progressively by global path planning, way-
point following, and the combination of the two modules. They are
performed via MATLAB R2021a environment with a PC that is con-
figured with a 2.10-GHz Intel(R) Core (TM) i7-1260P processor and
16.0-GB RAM.

4.1. Simulation: global task planning

4.1.1. Convergence test

In this subsection, simulation studies and comprehensive com-
parisons are provided to validate the convergence characteristic
and solution quality of GPGA in solving the global path plan-
ning problem. In order to facilitate simulations, we conduct the
performance evaluation using classical instances from TSPLIB, see
Table 1. To show the improvement effect of the novel strategies,
methods from existing references, including IPGA [58] and MOGA
[59], are applied to solve the problem. For fair comparison, we run
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Table 2. ) its low computational burden in the algorithm process. Compared
Comparison of time cost. to the MOGA, GPGA and IPGA are generally more computational
Instance GPGA IPGA MOGA efficiency because the complex crossover procedure and roulette
Eil51(3) 733 3.62 10.79 wheel select.lon are not performed, which mgmﬁcantly decr.eases
Berlin52(4) 7.47 8.69 10.63 the complexity. Moreover, compared to IPGA, our algorithm is su-
Eil76(4) 8.21 9.74 10.55 perior since the mutation operation is much simpler but remains
Eﬂg;é) ?-0123 ?2551 1;’% a high-level searching ability. As shown in Fig. 8, the IQR (range
at . i . . . >
Rat99(7) 1017 12.45 13.92 of the box) of GPGA is smaller than the reference algorithms in

30 times on each instance and perform statistical analysis regard-
ing time cost and solution optimality. It is worth to note that since
we only need to test the convergence characteristic, heterogeneity
is not considered. Therefore, the process of checking the USV-task
matching relationship is skipped.

The parameters are set as follows, the population number and
iteration are set as the same while other parameters are set by the
best value according to [58,59]:

e GPGA: M = 100, T;; = 4000, mutation = 0.3, P, = 0.7 (probabil-
ity of local exploration).

e IPGA: M = 100, T, = 4000, mutation = 0.01.

¢ MOGA: M =100, T, =4000, mutation
probability is adaptive.

0.3, the crossover

Computational results of GPGA and reference algorithms on the
convergence efficiency are shown in Fig. 8 and Table 2. As de-
noted in Table 2, GPGA can solve the general MTSPs more quickly
than the existing algorithms. With approximately 10% and 20%
lower time cost compared to IPGA and MOGA, GPGA has shown
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most cases (except for berlin52). The results indicate that the
proposed method can achieve satisfactory computational stability
results.

Table 3 presents the results of the compared algorithms on
the six instances in terms of their solution optimality. As denoted
by the best value (in bold), GPGA can optimally solve the MTSPs
in the simulations. Compared to IPGA and MOGA, the proposed
method yielded better results on the average and minimum dis-
tance. This indicates that GPGA merits strong global searching abil-
ity while preventing the local optimum effectively. This is con-
tributed by the local exploration and mutation strategy. On the
one hand, local exploration generates better offspring than the par-
ents by gathering the nearby tasks, which improves the popula-
tion quality. On the other hand, the various mutation strategies
can help the algorithm jump out of the local optimum, thereby
contributing to the global searching ability. In terms of stability,
GPGA has also shown better results in most cases (except for pr76),
see Fig. 9. Note that the results of IPGA are somewhat inconsistent
(eil51 and pr76, the bound is large). We assume it is because the
algorithm has fallen into numerous local optimums and yielded di-
verse results.
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Table 3
Comparison of the solution quality.

GPGA IPGA MOGA

Eil51 Avg (m) 468.87 Avg (m) 520.36 Avg (m) 500.07
Best (m) 446.37 Best (m) 462.95 Best (m) 452.96
SD (m) 16.04 SD (m) 27.73 SD (m) 29.11

Berlin52 Avg (m) 8778.31 Avg (m) 9811.12 Avg (m) 9295.84
Best (m) 7874.43 Best (m) 8609.51 Best (m) 8447.83
SD (m) 583.04 SD (m) 615.22 SD (m) 505.17

Eil76 Avg (m) 669.06 Avg (m) 806.02 Avg (m) 738.17
Best (m) 625.37 Best (m) 717.20 Best (m) 642.34
SD (m) 29.00 SD (m) 38.48 SD (m) 42.62

Pr76 Avg (m) 131,362 Avg (m) 140,870 Avg (m) 137,452
Best (m) 118,854 Best (m) 126,273 Best (m) 123,974
SD (m) 8293.41 SD (m) 7142.23 SD (m) 7093.82

Rat99 Avg (m) 1399.21 Avg (m) 1579.21 Avg (m) 1524.20
Best (m) 1292.83 Best (m) 1398.24 Best (m) 1367.24
SD (m) 48.27 SD (m) 64.38 SD (m) 63.66

Rat99 Avg (m) 1445.21 Avg (m) 1604.12 Avg (m) 1553.50
Best (m) 1344.34 Best (m) 1510.63 Best (m) 1408.62
SD (m) 51.54 SD (m) 51.51 SD (m) 64.31

Table 4 Table 6

Design of EMTSPs. Maneuvering derivatives of the USV model.

Case Tasks count USV count Common tasks Exclusive tasks Inertial related Value Damping related Value
1 40 3 25 5 for each my 85.28 dn -77.55
2 50 4 30 5 for each my; 162.50 d —0.02
3 60 3 39 7 for each ms3 41.45 ds3 —41.45
4 60 4 40 5 for each

Table 7

Table 5 Evaluation indexes of control performance of NMPC.

Parameters of the otter. Case 1AE, (m) A, (m)
Parameters Explanations Values Units Nominal 104.542 102.218
M Mass 65 kg 10% model uncertainty+disturb 554.233 369.489
L Length 2 m 20% model uncertainty+disturb 803.098 755.854
B Beam 1.08 m R R R
N, number of propellers 2 B Note: for convenience, we recorded the error with the sampling frequency of 1 Hz.

4.1.2. Heterogeneous task planning

In this subsection, to demonstrate the effects of the heterogene-
ity of USVs, four cases of experiments for the comprehensive anal-
ysis are designed. All four EMTSPs are assigned in turn with task
sizes 40, 50, 60, and 70, and the common tasks and exclusive tasks
are grouped according to Table. 4. It is worth to note that all the
tasks are randomly distributed in the 2-D workspace (100x100 m)
where the simulations are carried out. Each USV departs from its
base station and returns after completing the assigned tasks. The
parameter setting is the same as in Section 4.1.1.

The four EMTSPs are depicted in Fig. 10. As denoted in the fig-
ure, the common tasks, exclusive tasks for USV1, exclusive tasks
for USV2, and exclusive tasks for USV3 and USV4 are marked with
black circles, blue triangles, magenta pentagram, red squares, and
green pentagram, respectively.

The convergence history of the four cases is shown in Fig. 11. As
denoted by the convergence curve and time cost measurements,
the computational cost slightly increased compared to the previ-
ous results. This is caused by the checking and correction proce-
dure. Nevertheless, the proposed algorithm can still find the opti-
mal solution without sacrificing computational efficiency. As indi-
cated by Fig. 12, all the USVs with exclusive functional types have
successfully completed their corresponding tasks. The checking and
correcting of the USV-task matching relationship are performed af-
ter each genetic operation is completed, thereby ensuring no vio-
lation of the matching requirements. This indicates that our pro-
posed model can perfectly handle heterogeneous path planning.
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4.2. Simulation: waypoint following

In this section, simulation results are presented to demonstrate
the validity and assess the performance of the proposed NMPC
for waypoint tracking of an unmanned surface vehicle. In order
to show the advantage of the efficiency of our model, compara-
tive studies are also conducted with the well-known path follow-
ing method Integral line of sight (ILOS) [44] and the adaptive LOS
(ALOS) guidance [43]. The three methods are applied to the Ot-
ter surface vehicle, see Fig. 13. The Otter unmanned surface vehi-
cle is a 2-[m]-long and 1.08-[m]-wide robotic platform developed
by MARINE ROBOTICS (www.marinerobotics.com). The particulars
and mechanical properties are shown in Table 5 and Table 6, re-
spectively, and for more detailed information on the USV model,
the readers are referred to the MSS toolbox (https://github.com/
cybergalactic/MSS).

The parameters settings are expounded and explained here.
The prediction horizon length is selected to be 30 s, the con-
trol horizon is set as 2 s, and the sampling time is 0.1 s.
Umin = —3 M/S, Umax =3 M/S, T'min = —0.1 rad/s, rmax = 0.1 rad/s,
Tomax = Tomax = 1197 N, T . =T, . =-66.7N, ug=1.9mys.
The weight matrices were selected based on a series of
simulation tests: Q = diag([0.5, 0.5, 2, 0, 0, 30, 0, 0.1]),
P =diag([1, 1, 4, 0, 0, 30, 0, 0.2]), R =diag([0.001, 0.001]).
The weights on matrix Q and P were meant to penalize deviation
from the path and course angle, and failure to maintain the
required speed. Similarly, the weights on R penalizes aggressive
changes in the control signals, to achieve a smooth thruster signal.


http://www.marinerobotics.com
https://github.com/cybergalactic/MSS
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Fig. 18. Angle and velocity profile (a) NMPC; (b) ALOS; (c) ILOS.

As denoted in Section 3.2, the disturbances affecting the system
can be due to different external sources, such as wind, waves, and
currents. In order to study the performance of NMPC under spe-
cific environment disturbances, time-varying environmental distur-
bances are employed on surge (d;), sway (d;), and yaw compo-
nents (ds), see the following equation and Fig. 14:

dy = 1.5sint 4+ cos 0.7t

d, =1.7sin1.3t + 0.8 cos 0.8t

d; =1.2sin0.5t + 1.3 cos 1.2t. (26)

4.2.1. Test 1: simulation under different model uncertainties

In this subsection, we will test the robustness of the NMPC
with respect to the different level of model uncertainties. The test
cases are threefold: (1) nominal model without disturbances and
model uncertainty; (2) model with disturbances and 10% model
uncertainty; (3) model with disturbances and 20% model uncer-
tainty. The model uncertainties of the Otter vehicle are AM and
AD, which is randomly generated at each time within the uncer-
tainty boundary. Therefore, the inertial matrix value and damping
matrix value would vary according to the following equation at
each time step:

M=M+AM

D=D<+AD. (27)

In this simulation, we assume the boundary of the model un-
certainties are AM ¢ (0, 0.1M) and AD < (0, 0.1D) for the 10%
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case, while M e (0, 0.2M) and AD < (0, 0.2D) for the 20% case.
The reference path is designed as:

Xg = 6.25w + 50 sin (27 w/40)

Y4 = 8.75w — 0.05w?, (28)

where w is the path parameter that is independent of time. The
USV is originally positioned at x 0m,y = 0 m, while the ini-
tial point of the path is assumed to be w = 0 and it ends at @ = 50.

To analyze the results in more details, IAE (integrated absolute
errors) is employed to compare the steady-state and the transient
response performance quantitatively. IAE of longitudinal and lateral
position can be defined as:

t
IAEX=/ |Xe (@) |dw
0

t
mg=ﬁ|ﬁmmm¢ (29)
where X, and y. is the tracking error in the longitude and lateral
direction, respectively.

The results are presented in Fig. 15, wherein the reference path
is depicted in blue, the trajectory of the nominal model is illus-
trated in black, the model with 10% model uncertainty and dis-
turbances is shown in red, and the green line indicates the model
with 20% model uncertainty and disturbances. The effectiveness of
the proposed algorithm in handling model uncertainty below 20%
is evident from Figs. 15 and 16, where the USV successfully tracked
the reference path with satisfactory results. The statistical analysis
in Table 7 further confirms the performance of the algorithm, as
evidenced by the integrated absolute error of (104.542, 102.218),
(554.233, 369.489), and (803.098, 755.854) for nominal, 10%, and
20% models, respectively. Although some fluctuations are observed
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for relatively large model uncertainty, the USV demonstrates satis-
factory performance in tracking the desired path, highlighting the
robustness of the proposed algorithm.

4.2.2. Test 2: comparative study with other methods

The Integral line of sight (ILOS) [44] and the adaptive LOS
(ALOS) guidance [43] are implemented in combination with the
standard proven-in-use PID controllers: the Otter vehicle employs
a PID heading autopilot. The determination of the coefficients is set
according to [53]: Kp = 53.42, Kp = 14.84, K; = 14.84, Kgp = 74.2,
where Kgr is the acceleration feed forward coefficient. The param-
eters and disturbances are set as the same in Section 4.2.1. More-
over, we choose the 10% model uncertainty in the comparative
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study. The reference path is designed as:

Xy = 6.25w + 250 cos (1.5 w/40) — 0.05w?

¥4 = 8.75w — 0.0502, (30)

where o is the path parameter that is independent of time. The
USV is originally positioned at x 0m,y = 0 m, while the ini-
tial point of the path is assumed to be w = 0 and it ends at w = 50.

A comparative simulation between the proposed NMPC and the
other references is shown in Fig. 17 and Table 8. The reference path
is denoted by the blue dashed line, the trajectory of the NMPC is
the solid black line, and ALOS and ILOS are represented by the red
and green line, respectively. As shown in Fig. 17, It can be observed
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Table 8

Evaluation indexes of control performance.
Case IAE, (E + 03 m) IAE, (E + 03 m)
NMPC+10% uncertainty+disturb 1.7478 1.8453
ALOS+disturb 2.4022 2.2544
ILOS+disturb 2.7021 3.0882

Note: for convenience, we recorded the error with the sampling frequency of 1 Hz.

that the NMPC-based controller approaches the path and tracks the
path more directly, incurring smaller tracking errors. However, it
should be noted that the ALOS and ILOS methods exhibit a larger
deviation from the reference path. This observation may be at-
tributed to their comparatively weaker ability to reject external
disturbances. Moreover, it cannot be overlooked that the subopti-
mal performance of the PID controller in the proposed framework,
which may potentially result from inappropriate parameter tuning,
could also have contributed to the observed discrepancies in track-
ing accuracy.

Observing the signal curves in Fig. 18 shows that the true

course angle corresponds well with the reference signal in the case

of

NMPC. The other methods have shown relatively large devia-

tions, especially for ILOS. As to the speed, time history curves are
based on a constant design speed. It can be observed from the
speed profile that NMPC yielded relatively stable velocity during
the tracking, resulting in a smoother tracking performance. How-
ever, the speed profile demonstrates that the vehicle experiences a
reduction in speed whenever it comes into contact with significant
frequent deflections as a result of disturbances.

4.3. Simulation verification of the framework

In this section, the combination of the two modules is finally

verified in a systematic way. The simulation is conducted under
the context of a real-world water monitoring mission. We adopted
the artificial lake at Zhejiang University’s Zijingang Campus as the
simulation site, see Fig. 19. We present the results with the lo-

cal
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map, which has the origin of (120.076395°E, 30.299465°N)
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Fig. 21. Results of the waypoint following: (a) USV trajectories in satellite map; (b) Tracking results of USV1; (c) Tracking results of USV2.

according to the satellite data. The local map has a maximum
length and breadth of 501.6 m and 254.8 m, respectively.

As for the task distribution, 30 tasks are randomly distributed
in the water environment, see Fig. 19. We assume the two USVs
are the same but equipped with different sensors, e.g., USV1 is
equipped with a conductive temperature depth (CTD) collector
while USV2 carry the water collector, and these can be regarded
exclusive tasks for the USVs. The common tasks are normal patrol
missions that can be completed by both of the USVs. As denoted
in Fig. 19, the common patrol tasks, CTD tasks for USV1, and water
sampling tasks for USV2 are marked with black circles, red trian-
gles, and green pentagrams, respectively. Each USV departs from its
own base station and returns after completing the assigned tasks.
The parameters of GPGA, NMPC, and the USV system are the same
as in the previous sections.

The ability of the proposed framework to consistently address
the EMTSP and path following problem is eventually evaluated by
conducting simulations under real-world geographies. In general,
the proposed GPGA can optimally address the EMTSP with com-
paratively quick convergence performance. Fig. 20 presents the re-

sults of global path planning. As is shown in the figure, all the
USVs with exclusive functional types have been successfully as-
signed their corresponding tasks. This is directly in line with our
previous findings.

Fig. 21 shows the trajectories of the two USVs. It can be seen
from the figure that the USVs have successfully completed the mis-
sions. With the aid of NMPC, the vehicles can autonomously reach
all the planned points with satisfactory tracking performance. This
indicates that the proposed framework can assist USV in perform-
ing water monitoring missions. Moreover, environmental loads and
quick turns cause the vehicle’s real trajectories to deviate slightly
from the planned straight lines.

As to the tracking performance from the perspective of control,
the USVs have shown rather satisfactory results in the path fol-
lowing mission. It is clear from comparing the two signal curves
in Fig. 22 that the true heading angle matches well with the refer-
ence signal. However, a relatively large deviation exists when the
vehicle passes through the point where the course changes sig-
nificantly (around 30 s in Fig. 22. (a)). This is due to the sharp
turnings. For the speed profile, time history curves are based on
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a constant design speed. Upon approaching the sharp turns, the
surge speed was inconsistent. In spite of this, it remained close
to the desired speed while following the course. Variations in the
thruster signals reflected the vessel’s speed and direction as it
turned.

5. Conclusion

The work in this paper presents an insightful study that focuses
on path planning and path following for USVs in water monitor-
ing missions. The particular class of global path planning consisted
of problems where it is necessary to consider the heterogeneity
of the USVs/tasks to complete the mission. Moreover, the inher-
ent USV physical constraints pose a great challenge in achieving
robust path following. This article creates a systematical approach
against global path planning and path following with characteris-
tics such as global optimality, rapid convergence rate, and robust
control performance. From the corresponding results, it allows the
following conclusions to be drawn:

o The presented results indicate the proposed EMTSP in combi-
nation with GPGA can consistently address the heterogeneous
task planning of multiple USVs, thereby contributing to the wa-
ter monitoring missions with specific needs.

By utilizing the local exploration and greedy initialization,
GPGA merits strong global searching ability and rapid con-
vergence simultaneously. GPGA outperforms currently available
combinatorial optimization approaches and provides improved
solutions in all the problem variants.

Finally, reference targets can be properly tracked by virtue of
the NMPC strategy, ensuring smooth maneuvering by respecting
USV physical constraints.
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Some limitations of the current study need to be addressed in
future work.

Obstacles and unexpected invaders might threaten USV safety
and potentially cause mission failure. This paper only deals
with path planning in an obstacle-free area. In the future, ef-
ficient strategies can be applied to achieve obstacle avoidance.
The presented NMPC solves a highly nonlinear optimization
problem at each sample period, necessitating a significant pro-
cessing and time capacity. Utilizing a more practical technique
that can build a simpler version of the model permits the ap-
plication of quadratic programming algorithms, resulting in a
quicker implementation.

The collision between the USVs is not considered. The authors
are planning to design appropriate control strategies that could
achieve coordination between the USVs.

Moreover, the algorithm will be implemented in ROS systems
and applied to actual USVs in a real-world water monitoring
case.
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