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a b s t r a c t 

The idea of dispatching multiple unmanned surface vehicles (USVs) to undertake marine missions has 

ignited a burgeoning enthusiasm on a global scale. Embarking on a quest to facilitate inland water mon- 

itoring, this paper presents a systematical approach concerning global path planning and path following 

for heterogeneous USVs. Specifically, by capturing the heterogeneous nature, an extended multiple trav- 

elling salesman problem (EMTSP) model, which seamlessly bridges the gap between various disparate 

constraints and optimization objectives, is formulated for the first time. Then, a novel Greedy Partheno 

Genetic Algorithm (GPGA) is devised to consistently address the problem from two aspects: (1) Incorpo- 

rating the greedy randomized initialization and local exploration strategy, GPGA merits strong global and 

local searching ability, providing high-quality solutions for EMTSP. (2) A novel mutation strategy which 

not only inherits all advantages of PGA but also maintains the best individual in the offspring is devised, 

contributing to the local escaping efficiently. Finally, to track the waypoint permutations generated by 

GPGA, control input is generated by the nonlinear model predictive controller (NMPC), ensuring the USV 

corresponds with the reference path and smoothen the motion under constrained dynamics. Simulations 

and comparisons in various scenarios demonstrated the effectiveness and superiority of the proposed 

scheme. 

© 2023 Shanghai Jiaotong University. Published by Elsevier B.V. 

This is an open access article under the CC BY-NC-ND license 

( http://creativecommons.org/licenses/by-nc-nd/4.0/ ) 
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Note to practitioners : This paper is motivated by our ongo- 

ng experiments on the USV-assisted inland water monitoring mis- 

ions, which collect monitoring data for a wide range of marine 

lements including water temperature, depth, salinity, biological 

ndexes, and bathymetry. With the aid of the USVs, the collec- 

ion of monitoring data benefits from a great loss of manpower 

nd resources. However, the implementation of our approach 

as encountered a practical challenge due to the diverse sensors 

quipped on the USVs. This has resulted in certain areas being ac- 

essible only to specific USVs since they are equipped with the 

equired sensors. For instance, the targets that required tempera- 

ure or salinity data can only be visited by the USVs equipped with 

onductivity-temperature-depth profile collector. Unfortunately, ex- 

sting literature on global path planning mainly focuses on homo- 

eneous USVs, whereby the heterogeneous capabilities are omit- 

ed. More to the problem, after planning the target sequence, the 
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SVs’ practical waypoint following is challenging. Traditional way- 

oint following methods such as LOS-based is impossible to the- 

retically impose any constraint on the existing LOS laws, nei- 

her on the control actions nor their increments. What’s more, 

hey have also shown weak ability for disturbance rejection, which 

ay hinder their practical applications. To address the abovemen- 

ioned problems, we propose a novel systematic approach that 

ombines global path planning and path following. Using the pro- 

osed scheme, global planning optimality under heterogeneous 

onstraints and appropriately maneuvering the USV with a desired 

esponse within various physical constraints can be achieved si- 

ultaneously. We believe our work could benefit the readers who 

re currently conducting research in deploying multi-agent sys- 

ems for real-world engineering problems. 

. Introduction 

With artificial intelligence at the helm, the advancements of 

nmanned Surface Vehicles (USVs) have been propelled to new 

eights, charting a course towards a brighter future of autonomous 
access article under the CC BY-NC-ND license 

ing and waypoint following for heterogeneous unmanned surface 
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Fig. 1. Illustration of a typical monitoring mission. 
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xploration and unlocking the secrets of aquatic world [1–5] . 

pecifically, much attention has been given to exploit USVs to 

erform ocean and marine tasks in hostile or human-inaccessible 

reas, e.g., maritime patrolling, coastal guarding, and maritime 

earch and rescue [6–8] . Moreover, USVs can be applied to measure 

he environment data of inland water, which is crucial for achiev- 

ng environmental sustainability and securing water resources [9–

6] . The water monitoring mission follows different purposes, such 

s radioactive material detection [17] , measuring basic marine ele- 

ents (currents, temperature, and salinity) [ 18 , 19 ], biological in- 

estigations [20] , bathymetry surveying [21] , as well as observ- 

ng water columns or warming trend to reveal ocean carbon cy- 

le [ 20 , 22 , 23 ]. In order to successfully complete missions for wa-

er monitoring, the planning and control algorithms of USVs have 

lways been the keys to such problems [24] . On the one hand, 

he global planning algorithm aims to optimize the path sequence 

y assigning task points to multiple USVs in a manner that min- 

mizes energy consumption and equalizes the workload distribu- 

ion among USVs [ 25 , 26 ]. On the other hand, the waypoint follow-

ng control method guides the USVs to successfully visit the task 

oints [ 27 , 28 ]. Therefore, to ensure efficient and reliable operation 

or water monitoring, the global path planning and path following 

roblem should be addressed properly. 

Global path planning for USVs aims to compute the optimal 

outes based on the distribution of monitoring targets, require- 

ents of the mission, and settings of environment surroundings 

6] , see Fig. 1 . Prior research has traditionally equated global path 

lanning problem with the classical traveling salesman problem 

TSP), wherein a set of mission targets are equally prioritized for 

isitation and the objective is to determine the shortest possi- 

le sequence of waypoints [ 25 , 29 ]. The Multiple Traveling Sales- 

en Problem (MTSP), which can be defined as finding the short- 

st route for multiple USVs, is introduced when there are various 

SVs involved. TSP-variants are usually non-deterministic polyno- 

ial (NP-hard) problems [ 26 , 30 ]. These problems are for which, 

ven in theory, no shortcut or algorithm is possible to lead to a fast 

nd optimal solution. To obtain an optimal solution, an exhaus- 

ive analysis of all possible outcomes is required, which is com- 

utationally intensive. Consequently, heuristic approaches such as 
2

volutionary algorithms (EA), ant colony optimization (ACO), and 

article swarm optimization (PSO) are ideal for addressing these 

roblems since they can provide satisfactory sub-optimal solutions 

ith comparatively low computational burden [ 25,31–34 ]. 

Presently, booming academic and technological advancements 

ertaining to the global path planning of USVs have emerged in 

he latest research works. Considering the distribution of the tar- 

ets, [25] used an orientation angle-based grouping strategy to en- 

ance PSO for water quality detection and sampling. Compensat- 

ng for the inherent shortcomings of conventional GA including 

low convergence and premature, [ 34 ] proposed the multiple off- 

pring GA for the global path planning of unmanned surface ve- 

icles. To navigate a USV in a real maritime environment, a se- 

ies of studies on the implementation of improved particle swarm 

ptimization have been carried out by [ 30,35 ]. By minimizing the 

nergy consumption per unit time in multiple task locations, a 

haotic and sharing-learning particle swarm optimization (CSPSO) 

lgorithm is proposed [ 36 ]. To solve the multiple-waypoint path 

lanning for survey USVs, a discrete group teaching optimization 

lgorithm (DGTOA) is devised by [ 37 ]. Enhancing the global search 

bility for unmanned surface vessel path planning, [26] devised an 

mproved differential evolution particle swarm optimization algo- 

ithm (DePSO). In conjunction with self-organizing map (SOM), an 

mproved genetic algorithm is studied by [ 38 ] to address the path- 

lanning problems for a multiple unmanned surface vehicle (USVs) 

ystem. However, MTSP-variants are difficult to solve since they 

re non-convex [ 39 ]. Existing meta-heuristic methods feature low 

onvergence speed and may also fall into local optimization easily. 

hus, a more effective combinatorial optimization method should 

e devised for the path planning problem, with an emphasis on 

mproving the global search capability through the integration of a 

onvenient and effective mechanism [ 39 ]. 

Moreover, one crucial aspect that has rarely been addressed 

y current studies is the heterogenous nature pertaining to the 

SVs’ capabilities. In essence, the abovementioned MTSP-variant 

s an abstraction of the practical problems in which multiple ex- 

cuting individuals (homogeneous agents) are involved and share 

 common workspace (target points) [ 25,30,34–37 ]. However, indi- 

iduals have the same workspace in real-world problems. In some 
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ases, the targets of individual USVs are not the same but over- 

ap with each other. Thus, each USV has to perform not only the 

ommon tasks that can be accessed by any of them but also com- 

lete the tasks that correspond to their exclusive capabilities. In 

ater monitoring missions, since the USVs are equipped with dif- 

erent types of sensors, some areas should be only visited by one 

pecific type of USV. For instance, the targets that require temper- 

ture or salinity data can only be visited by the USVs equipped 

ith conductivity-temperature-depth profile collector. Such a prob- 

em is frequently encountered in real-world applications, yet there 

s quite limited research available on it. To the best of our knowl- 

dge, the global path planning problem of heterogeneous USVs is 

till an open and vital topic at the current stage. 

In addition to global path planning, a feasible waypoint tracking 

trategy ensures the USV to access the reference target sequence 

s precisely as possible, thereby contributing to successfully com- 

leting the missions [ 28,40 ]. Waypoint tracking is similar to the 

traight-line path following problem, there are three objectives: 

1) minimizing the cross-tracking error along the reference path 

nd real trajectory; (2) achieving smooth turns and avoiding dras- 

ic maneuvers; and (3) maintaining a constant surge speed [ 41,42 ]. 

revious studies have divided the traditional path following meth- 

ds into two separate modules in a cascade structure: the guidance 

odule and a low-level controller [ 40,41 ]. On the one hand, the 

uidance module is in charge of producing the set points for the 

eading angle and forward speed along with their corresponding 

ime dependencies, such that the USV should follow the desired 

ath and adhere to the time restrictions for the desired forward 

peed. The low-level module, on the contrary, has a controller that 

orks with the propellers to track the set points that the guidance 

ayer provides. As a result, in the conventional path following prob- 

em, the low-level controller concentrates on the dynamics while 

he guidance module concentrates on the kinematics [ 27,40 ]. 

In the literature, many different strategies have been proposed 

or the path following of USVs. For the guidance module, a well- 

nown method for path following of straight lines is the line-of- 

ight (LOS) guidance, which is based on the approach of experi- 

nced helmsmen who steer the vessel toward a point lying at a 

onstant distance ahead of the ship along the desired path. LOS 

as been enhanced over the years, including application to Dubins 

aths [ 43 ], compensating for the drift effect [ 44 ], rejection of se-

ere ocean disturbances [ 45 ], combination with fuzzy logic system 

 46 ], and solving the large curvature path following [ 47 ]. As for

he low-level control module, extensive research has taken place 

n the past using ideas from almost all branches of control engi- 

eering: robust control [ 41 ], sliding mode control [ 48 ], deep rein-

orcement learning and neural network [ 49–51 ], and backstepping 

ontrol [ 52 ]. However, traditional control strategies are usually lim- 

ted by the constraints on states as well as their increments in real 

echanical system, and none of the above-mentioned works has 

onsidered the dynamic bounds explicitly. Moreover, since tradi- 

ional path following schemes used to maneuver the USV along 

he prescribed path are designed separately, it is difficult to the- 

retically impose such dynamic limits on the traditional methods, 

either on the control actions nor on their derivatives [ 27,40 ]. 

As observed from the foregoing works, domestic and foreign re- 

earchers undertook a series of studies on the global path planning 

f USVs and path follow problems. However, it should be noted 

hat past research has certain shortcomings: (1) Since existing lit- 

rature mainly focuses on the global path planning problem of ho- 

ogeneous USVs, a general problem model for the heterogeneous 

SVs is urgently desirable; (2) We are of the opinion that there 

s still room for improvements in combinatorial optimization ap- 

roaches to solve the non-convex problems such as MTSP-variants. 

 more effective combinatorial optimization method needs to be 

pecifically designed to facilitate the solutions. (3) Traditional guid- 
3

nce and control schemes are separated dynamics, which is impos- 

ible to theoretically impose any constraint, neither on the input 

ignals nor on their control increments. 

Motivated by the considerations mentioned above, this paper 

xplores the global path planning for heterogeneous USVs, and 

heir path follow problems in the context of the water monitoring 

ission. The main contributions are illustrated as follows: 

• A novel global path planning and waypoint following frame- 

work is proposed to formulate path-planning and path-tracking 

in an organically way. Augmented practicability has been 

achieved by extensive simulation and experimental evaluations 

under complex environments. 
• An extended multiple travelling salesmen problem (EMTSP) is 

established by bridging the heterogeneous nature and various 

disparate constraints jointly, providing a systematic model for 

the global path planning of multiple heterogeneous USVs. 
• Incorporating the greedy randomized initialization and local ex- 

ploration, we propose the Greedy Partheno Genetic Algorithm 

(GPGA) to consistently address the global path planning. GPGA 

merits strong global searching ability and facilitates local escap- 

ing simultaneously. In such a case, the underlying optimization 

problem is fully exploited, and it converges quickly to generate 

optimal waypoint sequence. 
• With the aid of the proposed nonlinear model predictive con- 

troller, reference targets can be properly tracked by virtue of 

the NMPC strategy where robust maneuvering is ensured by re- 

specting USV’s physical constraints and external disturbances, 

thereby contributing to the successful completion of water 

monitoring. 

The remaining sections of this article are organized as 

ollows. The problem formulation is described in Section 2 . 

ection 3 presents the global path planning algorithm and NMPC 

esign. The superiority and efficiency of the proposed framework 

s verified through illustrative simulations in Section 4 . Finally, the 

oncluding remarks are given in Section 5 . 

. Problem formulation 

The overall framework of the problem consists of two mod- 

les, i.e., extended multiple travelling salesman problem (EMTSP) 

nd path following problem. The first module aims to obtain a 

ulti-target cruise permutation, which provides USVs with a se- 

uence traversing all non-repeating targets. In this process, the 

eterogeneity of the targets and USVs is considered. Based on 

he planned target sequence, the second module guides the USVs 

raversing all target points through an ocean environment while 

eeping the tracking error as small as possible. 

.1. Heterogeneous global path planning problem 

.1.1. USV model 

Suppose the set of the USVs is denoted by U k = 

 U 1 , U 2 , U 3 , . . . , U N U 
} , k = 1 , 2 , 3 , . . . , N U , and N U is the num-

er of the USVs. Due to the various types of the equipment 

nboard, the first attribute lies on the functionality of the USVs. 

uppose the USV has the attribute of the exclusive functional type, 

hich is denoted by F k = { F 1 , F 2 , . . . , F N F } , k = 1 , 2 , 3 , . . . , N U ,

here N F is number of the types. It indicates that USV U k pos- 

esses the unique capability of executing a specific type of task, 

.g., the mapping mission must be performed by the USVs with 

urveying devices onboard while the attacking mission must be 

ompleted by USVs with weapons. 

.1.2. Task model 

Suppose the set of the tasks is denoted by T i = 

 T 1 , T 2 , T 3 , . . . , T N T } , and N T is the number of the targets. To 
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e in accordance with the USVs’ functions, the task set is di- 

ided into N F + 1 disjoint nonempty sets, i.e., tasks with common 

unctional type F 
′ 

C 
and tasks with exclusive functional type F ′ , 

 F ′ ∈ { F ′ 
1 
, F 

′ 
2 
, . . . , F 

′ 
N F 

} . The common tasks can be visited by any

SVs while the exclusive tasks can be only accessed by specific 

SVs, and it is formulated as follows: 

 

k = F i 
′ 

or F k = F i 
′ 

c , i ∈ 1 , 2 , . . . , N T , k = 1 , 2 , . . . , N U . (1)

.1.3. Problem statement 

To determine the task sequence, an extended multiple travel- 

ng salesman problem (EMTSP) is formulated, in which the het- 

rogeneous nature is considered. Suppose the set of the USVs is 

enoted by U k = { U 1 , U 2 , U 3 , . . . , U N U 
} , and the target set is de- 

oted as T i = { T 1 , T 2 , T 3 , . . . , T N T } , where N U < N T . It can be for-

ulated over a complete digraph G ( H , E ) , where vertex set H =
 0 , 1 , 2 , . . . , N T − 1 } numbers the tasks; and each edge in ( i, j ) ∈ 

, i � = j, is associated with a weight ω i j representing a visit cost be-

ween two tasks i and j. The binary variable x i jk = 1 , i � = j, i, j ∈ H ,

 ∈ Z, if the k th USV passes through edge ( i, j ) ; and otherwise

 i jk = 0 . Consequently, the tour cost ω i j is obtained by calculating 

he distance between tasks i and j, which gives: 

 i, j = ‖ T i − T j ‖ , 
(
i, j 

)
∈ E. (2) 

Then the total cost of the USV U k is: 

 k = 

N T −1 ∑ 

i =0 

N T −1 ∑ 

j=0 

ω i, j x i jk , (3) 

Based on the aforementioned models, the formulated multi- 

bjective problem is stated as follows: 

in F = f 1 + f 2 (4) 

f 1 = 

N U ∑ 

k =1 

D k (5) 

f 2 = Max D k ︸ ︷︷ ︸ 
k =1 , 2 , ... , N U 

− Min D l ︸ ︷︷ ︸ 
l=1 , 2 , ... , N U 

(6) 

ubject to the following constraints: 

 i, j = ‖ T i − T j ‖ , 
(
i, j 

)
∈ E (7) 

 k = 

N T −1 ∑ 

i =0 

N T −1 ∑ 

j=0 

ω i, j x i jk (8) 

N T 
 

i =1 

x 0 ik = 1 , i ∈ H , k = 1 , 2 , . . . , N U (9)

N T 
 

i =1 

x j0 k = 1 , j ∈ H , k = 1 , 2 , . . . , N U (10)

N U 
 

k =1 

N T −1 ∑ 

i =0 

x i jk = 1 , i � = j, j ∈ H \ { 0 } , k = 1 , 2 , . . . , N U , if α = 0 

(11) 

 

k = F i 
′ 

or F k = F i 
′ 

c , i ∈ H , k = 1 , 2 , . . . , N U . (12)

Remark. 1 . The constraints are expounded as follows. Eqs. (7) , 

8) denote the expressions of the visit cost ω i, j and total cost of a

SV D k . Eqs. (9) , (10) indicate the every USV starts from and re-

urns to the depot after the tour. Eq. (11) denotes each task except 

epot must be visited by a USV exactly once. Eq. (12) indicates that 

he USV must visit the its own exclusive task or a common task. 
4

.2. Path following problem 

This section briefly describes the three-DOF maneuvering model 

or the motion of an USV moving in the horizontal plane and a 

asic statement of the path following problem. For more details, 

he reader is referred to [ 53 ]. 

.2.1. Basic assumptions 

The general model of a typical USV has six degree-of-freedom 

DOF): surge, sway, yaw, heave, roll, and pitch. These can be sim- 

lified into a 3-DOF model with the following assumptions: 

ssumption 1. The motions that generated by wind, waves, and 

urrents including heave, roll, and pitch are negligible. 

ssumption 2. The hydrodynamic damping is linear. 

ssumption 3. The control actions consist of surge force and yaw 

oment. 

ssumption 4. The inertia-related and damping-related matrices 

re diagonal [ 54 ]. 

emark 2. Nonlinear damping is not considered, since it would in- 

rease the complexity of the controller without contributing to im- 

roving the result. 

.2.2. Vessel model 

Based on the assumptions, the 3 DOF kinematic and dynamic 

odel of a surface vessel in a horizontal plane (see Fig. 2 ) is: 

˙ = R 

(
ψ 

)
v r 

 ̇

 v r + C 
(

˙ v 〈 r 〉 
)

˙ v r + D v r = τ (13) 

here η = [ x, y, ψ ] 
T 

denotes the position coordinates and head- 

ng angle in the earth-fixed inertial frame {n}, v r = [ u r , v r , r ] 
T = 

 − v c includes the relative velocities in the body-fixed frame {b}, 

= [ τu , 0 , τr ] 
T 

gathers the vector of control signals. It is worth to 

ention that the underactuated configuration is considered in this 

aper since the surge force and yaw moment are the only control 

orces. The rotation matrix R(ψ) denotes the transformation be- 

ween the body-fixed frame and the earth-fixed inertial frame: 

 

(
ψ 

)
= 

⎡ 

⎣ 

cos 
(
ψ 

)
−sin 

(
ψ 

)
0 

sin 

(
ψ 

)
cos 

(
ψ 

)
0 

0 0 1 

⎤ 

⎦ , (14) 
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The mass matrix M = M 

T > 0 includes the inertial features of 

he USV and hydrodynamic added mass. The matrix D includes 

he damping coefficients. The Coriolis matrix C, which includes the 

oriolis and centripetal effects, can be derived from M. According 

o the forementioned assumptions, the matrices M, C, and D can 

e expressed as: 

 = 

⎡ 

⎣ 

m − X ˙ u 0 0 

0 m − Y ˙ v 0 

0 0 I z − N ˙ r 

⎤ 

⎦ = 

⎡ 

⎣ 

m 11 0 0 

0 m 22 0 

0 0 m 33 

⎤ 

⎦ 

 = 

⎡ 

⎣ 

0 0 −( m − Y ˙ v ) v 
0 0 ( m − X ˙ u ) u 

( m − Y ˙ v ) v −( m − X ˙ u ) u 0 

⎤ 

⎦ 

= 

⎡ 

⎣ 

0 0 −m 22 v 
0 0 m 11 u 

m 22 v −m 11 u 0 

⎤ 

⎦ 

 = 

⎡ 

⎣ 

d 11 0 0 

0 d 22 0 

0 0 d 33 

⎤ 

⎦ , (15) 

here the parameters m 11 , m 22 , and m 33 include the ship in- 

rtia including added mass effects, d 11 , d 22 , and d 33 denote the 

amping-related coefficients, X ˙ u , Y ˙ v , and N ˙ r are the hydrodynamic 

oefficients, and m and I z denote the mass and rotational inertia of 

he underactuated marine vehicle, respectively. 

ssumption 5. The body-fixed coordinate frame {b} (body frame) 

s located at a point ( x ∗
P 
, 0 ) , at a distance x ∗

P 
from the vehicle’s

enter of gravity along the center line of the ship. 

Therefore, the 3-DOF model is expounded as: 

˙ 
 = u cos ψ − v sin ψ 

˙ 
 = u sin ψ + v cos ψ 

˙ 
 = r 

˙ 
 = 

m 22 

m 11 

v r − d 11 

m 11 

u + 

1 

m 11 

τu 

˙ 
 = − m 11 

m 22 

ur − d 22 

m 22 

v 

˙ 
 = 

m 11 − m 22 

m 33 

u v − d 33 

m 33 

r + 

1 

m 33 

τr , (16) 

here 

u = T s + T p , τr = 

(
T p − T s 

)
B/ 2 . (17) 

T p , T s , and B refer to the control output of port propeller, star-

oard propeller, and beam length of the USV. 

Considering the input saturation, τ = [ τu , 0 , τr ] 
T 

deno tes the 

ctual control signal produced by the propellers, and τ is written 

s 

at ∗( x ) = 

⎧ ⎨ 

⎩ 

τ∗max , x > τ∗max 

x, τ∗min ≤ x ≤ τ∗max 

τ∗min , x < τ∗min , 

(18) 

here τ∗max and τ∗min denote the upper and lower bounds, respec- 

ively, where ∗ = u, r. The desired control inputs should be x and 

he actual control inputs should be τ . 
5 
.2.3. Problem description 

Consider a global planner delivers the USV with a set of way- 

oint permutations or reference path. The USV should then prop- 

rly navigate through the path that these waypoints have defined. 

ollowing a predetermined path without regard to time restrictions 

s referred to as path following [ 53 ]. An underactuated vessel could 

omplete this mission with total velocity U d = 

√ 

u 2 + v 2 in the 

ED frame is tangential to the path. It is worth noted that the pri- 

ary distinction between the trajectory tracking task and the path 

ollowing task is that the path following task’s path is elements 

hat make up by a generic variable rather than time. This indicates 

hat the vehicle is not necessary to arrive at a precise place along 

he curve at a particular time, but rather it must converge to the 

ath and proceed through it at a constant speed. 

To solve the aforementioned issue, a new reference frame is 

enerated at the desired path γ (s ) = { ( x (s ) , y (s ) ) | s ∈ R } , where s 

s a scalar parameter. and travel along the curve with a constant 

peed U > 0 . According to the definition, let’s consider a virtual 

rame (VF) moves along γ (s ) . For a waypoint p along the curve 

f the origin of VF, which we call x (s ) , y (s ) is defined by the pa-

ameter s , and the path angle is ψ(s ) . Now, objectives of the path

ollowing problem can be illustrated as: 

lim 

→∞ 

x e = 0 (19) 

lim 

→∞ 

y e = 0 

lim 

→∞ 

ψ e = 0 

here 
 

 

x e 
y e 
ψ e 

⎤ 

⎦ = 

⎡ 

⎣ 

cos 
(
ψ ( s ) 

)
−sin 

(
ψ ( s ) 

)
0 

sin 

(
ψ ( s ) 

)
cos 

(
ψ ( s ) 

)
0 

0 0 1 

⎤ 

⎦ 

⎡ 

⎣ 

x − x ( s ) 
y − y ( s ) 

ψ − ψ ( s ) 

⎤ 

⎦ , (20) 

here x e , y e , and ψ e represent the position and course angle error 

etween the marine vehicle and the path. 

. Methodology 

The general framework of the methodology is illustrated in 

ig. 3 . 

.1. Greedy Partheno Genetic Algorithm 

In this section, we propose the Greedy Partheno Genetic Algo- 

ithm (GPGA) and introduce how it solves the proposed EMTSP ef- 

ciently. Partheno genetic algorithm (PGA) is a modified version 

f GA that produces offspring through parthenogenesis. In lieu 

f conventional GA’s mutation and crossover operators, PGA uti- 

izes a series of operators on a single chromosome to produce off- 

pring. Specifically, the crossover operator plays a crucial role in 

A, whereas the mutation operator is typically regarded as an as- 

isting operator. In PGA, however, the crossover operator is elimi- 

ated, and the mutation operator is considered the main operator. 

onsequently, PGA is more straightforward than GA in genetic op- 

rations, and initial population diversity is optional. 

.1.1. Dual-coded chromosome 

The existing single chromosome and break-point type chromo- 

ome coding schemes are not suitable for EMTSP due to its het- 

rogenous feature. To this end, we propose a dual-coded chromo- 

ome type that is decimally coded, i.e., task and USV chromosomes 

ith the individual length being N T − 1 . The depot for all USVs 

s not coded in the chromosomes and is added to the final solu- 

ion to meet the constraints. The first chromosome has a permuta- 

ion of N − 1 tasks while the second assigns a USV to each of the
T 
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Fig. 3. Framework of the proposed method. 

Fig. 4. Chromosome representation. 
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Algorithm 1 Greedy randomized initialization. 

1: Input: Exclusive task sets { E 1 , E 2 , E 3 , . . . , E N F } , common t ask set C

2: Output: p% feasible solution 

3: p ← ∅ 
4: % Build N F partial routes with exclusive tasks 

5: for k = 1 : N F do 

6: r k ← { 0 } % Initiate the route with task 0 

7: while E k � = ∅ do 

8: Randomly select task i from E k 
9: Insert task i into r k with minimal distance increase 

10: Remove task i from E k 
11: end while 

12: p ← p{ r k } 
13: end for 

14: % Dispatch the common tasks C\{ 0 } among N F partial routes 

15 C ′ ← C\{ 0 } 
16: while C ′ � = ∅ do 

17: Randomly select task j from C ′ 
18: Insert task j into route p with total minimal distance increase 

19: Remove task j from C ′ 
20: end while 

21: return p

N

d

k

s  

t

s

i

o

f

t  

m

3

n

m

o

t

p

ommon and exclusive tasks in the corresponding position of the 

rst, following the task-USV matching relationship represented by 

q. (12) . 

A coding example of the chromosome with N T = 10 and N U = 

3 is shown in Fig 4 . Gene 1, 2, and 3 in the task chromosome are

xclusive tasks for USV 1, gene 4 and 5 are exclusive for USV 2, 

ene 6 and 7 are exclusive for USV 3, respectively. It represents 

he task-USV matching relationship that must be met. The com- 

on tasks are genes 8–10 that can be accomplished by any USV. 

s denoted in the chromosome, task 2, 10, 1, and 3 (in that se- 

uence) are visited by USV 1. Similarly, task 9, 5, and 4 (in that 

equence) are visited by USV 2, and task 8, 7, and 6 are visited by

SV 3. 

.1.2. Fitness function 

With GPGA, the roulette selection is no longer used, and the 

tness value is now calculated as the sum of the total distance and 

he difference between the maximum and minimum distances., see 

q. (21) . The smaller the fitness function is, the better the quality 

f the individual is. 

 = 

N U ∑ 

k =1 

D k + 

⎛ 

⎜ ⎝ 

Max D k ︸ ︷︷ ︸ 
k =1 , 2 , ... , N U 

− Min D l ︸ ︷︷ ︸ 
l=1 , 2 , ... , N U 

⎞ 

⎟ ⎠ 

(21) 

.1.3. Greedy randomized initialization 

The GPGA begins its search with an initial population P of 

p high-quality solutions, often known as elite solutions. To de- 

elop an initial population, we generate a feasible solution using 

 greedy randomized heuristic. The initialization is illustrated by 

he following steps: 1) Use the exclusive task set to construct a 

ubtour for each USV; 2) distribute the common tasks among the 
6 
 U subtours to get the solution. The pseudocode of the greedy ran- 

omized initialization is shown in Algorithm 1 . 

Initiating the route with task 0 is the first step to create the 

 -th partial route r k (lines 5–13). Next, uniformly selected exclu- 

ive tasks from E k are introduced into r k each one at a time, with

he purpose of maximizing the route distance reduction. The first 

tep terminates when each salesman’s exclusive cities is entered 

nto the corresponding route, yielding a partial solution p made up 

f N F partial routes. The second phase (lines 15–20) involves uni- 

ormly processing the common tasks j from C\{ 0 } and inserting 

hem, one at a time, into a route of the partial solution p so as to

inimize the increments of the distances of the solution. 

.1.4. Local exploration 

When it comes to GPGA, local exploration is a crucial compo- 

ent that aids drive the discovery of solutions for quality improve- 

ent. GPGA uses a special method that clusters the tasks near to 

ne other to examine local exploration and generate a better solu- 

ion. The procedure is illustrated in Algorithm 2 . 

By clustering the tasks adjacent to each other, the exploration 

rocedure can locally improve the solution optimality. P and P 
A B 
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Algorithm 2 Local exploration. 

1: Input: Two randomly selected chromosomes P A , P B 
2: Output: new chromosome P C 
3: L = P A .length () 

4: f lag = rand{ −1 , 1 } 
5: k = rand( 1 , L ) , k ∈ Z
6: P C = [ k ] 

7: while L > 1 do 

8: if f lag == 1 then 

9: g A = P A .Adjacent( k, 1 ) % Adjacent( k, 1 ) : front to back 

10: g B = P B .Adjacent( k, 1 ) 

11: else 

12: g A = P A .Adjacent( k, −1 ) % Adjacent( k, −1 ) : back to front 

13: g B = P B .Adjacent( k, −1 ) 

14: end if 

15: P A .pop(k ) , P B .pop(k ) , f lag = rand{ −1 , 1 } 
16: d A = ‖ k, g A ‖ 
17: d B = ‖ k, g B ‖ 
18: if d A < d B then k = g A 
19: else k = g B 
20: end if 

21: P C .push (k ) 

22: L = P A .length () 

23: end while 

24: return P C 

Fig. 5. Example of local exploration. 
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Fig. 6. Mutation operators. 
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epresent two randomly selected chromosome and the new chro- 

osome is produced in various exploration directions with respect 

o the f lag value. Let us take P A (see Fig. 5 ) as the parent, k as 3,

nd f lag as 1, the exploration starts from front to back, thereby re- 

ult in the next nearby task to k , i.e., 6. On the contrary, if we take

f lag as −1, the exploration starts from back to front in P A , and the

revious task adjacent to k is found, i.e., 9. The same applies to P B .

n example is shown in Fig. 5 , whereby the task 1, 2, and 3 are ex-

lusive for USV 1, 2, and 3, respectively. We take k = 3 as the start

nd f lag = 1 (Suppose f lag will not change in this case). 

The procedure of the local exploration is illustrated as follows: 

Step 1 : Randomly choose two individuals P A and P B . 

Step 2 : Generate a chromosome based on Algorithm 2 and ran- 

domly choose a USV chromosome as the new USV chromo- 

some. 

Step 3 : Check if each exclusive task is assigned to a correct USV 

and correct the wrong assignments if any. 

Step 4 : Rationalize the sequence and rank the genes by task 

order and category. 

.1.5. Mutation operators 

In order to prevent the search process getting trapped in a local 

ptimum, the mutation operator is implemented. In this study, we 

evelop four alternative mutation operators to increase the num- 

er of chromosomal variant forms and permutations available to 

he search process, hence increasing the likelihood of it to escape 

he local optimum. If a mutation is being selected in the children’s 

hromosome, each of the four could be selected. 

Swap mutation : Two tasks i and j, i < j, i, j ∈ H on task

hromosome are firstly randomly selected. Then, the two genes on 

he selected points are exchanged, as shown in Fig. 6 (a). 
7 
Invert mutation : Two tasks i and j, i < j, i, j ∈ H on task

hromosome are firstly randomly selected as the subtour. Then, the 

rder of the subtour between i and j is inverted, see Fig. 6 (b). 

Scramble mutation : Two tasks i and j, i < j, i, j ∈ H on task

hromosome are firstly randomly selected as the subtour. Then, the 

rder of the subtour between i and j is scrambled, see Fig. 6 (c). 

Insert mutation : One task i , i ∈ H on task chromosome is ran-

omly selected, removes it from the chromosome, and inserts it in 

 randomly selected place, see Fig. 6 (d). 

The process of mutation of the GPGA are described as follows: 

Step 1 : Select five members randomly from the current popu- 

lation who have not already been chosen before. 

Step 2 : Find the one has the best fitness value in the 5 mem-

bers. 

Step 3 : Generating a temporary population that consists of 5 

members. Each of the individual is assigned to the value of 

the individual selected in step 2. 

Step 4 : Generate 2 random points i and j, or the insertion lo- 

cation i . 

Step 5 : Mutate each individual in the test group created in step 

3 in the following procedures: 

(1) The first one will stay the same. 

(2) The second one will mutate by swapping. 

(3) The third one will mutate by inverting. 

(4) The fourth one will mutate by scrambling. 

(5) The last one will mutate by inserting. 

(6) Check if each exclusive task is assigned to a correct USV and 

correct the wrong assignments if any. 

Step 6 : Merge the generated population into the original. 

Step 7 : If all individuals in the current population have been 

selected, then move on; otherwise, return to step 1. 

Swap, Invert, Scramble, and Insert are all PGA mutation pro- 

edures that find their way into GPGA as well. Therefore, GPGA 

hares the same benefits as PGA. Additionally, step 5 ensures that 

he best individual identified in step 2 will be passed on to the 

ext generation. New individuals will be generated by altering the 

nest possible one in several ways. Some of the new individuals 

re produced by changing the route of the best individual. Also, a 

ew are made by adjusting the best individuals’ USV-task matching 

elationships. Others are produced by altering both produces. In 

his way, the mutation operation takes into account both the route 

equence and the matching relationship. Additionally, since the se- 

ected individual to be altered to generate children is a relatively 

ecent individual, step 5 ensures that the algorithm will recognize 

he second-best options in the iterative process. The foregoing sug- 

ests that GPGA outperforms over PGA in both global search capa- 
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Fig. 7. Flowchart of GPGA. 
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ility and local escaping ability. Generally speaking, GPGA makes it 

impler to arrive at the optimal potential solution. 

.1.6. Algorithm flow 

For an objective function F (X ) , GPGA will find an X ∗ such that

 X , F ( X ∗) < F (X ) . The proposed GPGA are illustrated as following,

ee Fig. 7 : 

(1) Generate the initial population using the greedy randomized 

initialization. 

(2) Evaluate the fitness value of each individual X 
g 
i 

( g is the 

number of current generations, i is the index for individual) 

in the initial set. The scheme of elitism dictates that the one 

with the highest fitness will be replicated and labeled as X ∗. 

(3) Implement mutation and local exploration using the strate- 

gies depicted in Sections 3.1.4 and 3.1.5 to produce offspring. 

(4) Evaluate the fitness value of X 
g+1 
i 

in the new generation. If 

F ( X g+1 
i 

) ≤ F ( X ∗) , X g+1 
i 

is replicated and labeled as X ∗. 

(5) If the terminal condition holds, the best answer, X ∗, should 

be exported or set g = g + 1 , then turn to (3). 

.2. Nonlinear model predictive control 

.2.1. State space model 

Tracking error ( x e , y e ) minimization is the primary goal of 

MPC control during path-following. In addition, it is preferred 

hat the USV’s course angle corresponds to that of the path angle, 

uaranteeing that ψ e converge to zero. Hence, combining the er- 

or dynamics and USV dynamics, we introduce the following state 

pace model: 

˙ 
 e = u cos (ψ − ψ ( s ) ) − v sin 

(
ψ − ψ ( s ) 

)
˙ 
 e = u sin (ψ − ψ ( s ) ) + v cos 

(
ψ − ψ ( s ) 

)
˙ 
 e = r 

˙ 
 = u cos ψ − v sin ψ 

˙ 
 = u sin ψ + v cos ψ 
8 
˙ 
 = 

m 22 

m 11 

v r − d 11 

m 11 

u + d 1 

˙ 
 = − m 11 

m 22 

ur − d 22 

m 22 

v + d 2 

˙ 
 = 

m 11 − m 22 

m 33 

u v − d 33 

m 33 

r + d 3 . (22) 

Therefore, the vessel model is written in a compact form as: 

˙  = f ( x ) + g 1 ( x ) u + g 2 ( x ) w, (23) 

here x = [ x e , y e , ψ e , x, y, u, v , r ] 
T 

is the state vector, u = 

 τu , τr ] 
T 

is the input vector of surge force and yaw moment, w = 

 d 1 , d 2 , d 3 ] 
T 

is the disturbance on surge, sway, and yaw, g 1 (x ) and 

 2 (x ) are the control and disturbance configuration matrices, re- 

pectively, with the following structure: 

 1 ( x ) = 

[
0 0 0 0 0 

1 
m 11 

0 0 

0 0 0 0 0 0 0 

1 
m 33 

]T 

 2 ( x ) = 

[
0 5 ×3 

M 

−1 R 
(
ψ 

)] = 

⎡ 

⎢ ⎣ 

0 0 0 0 0 cos ψ 
m 11 

sin ψ 
m 22 

0 

0 0 0 0 0 sin ψ 
m 11 

cos ψ 
m 22 

0 

0 0 0 0 0 0 0 1 
m 33 

⎤ 

⎥ ⎦ 

T 

, 

(24) 

As a result of the lack of a sway control force created by the 

ctuators, the controller is unable to reject the disturbance in the 

way direction for the undereducated configuration. By the defini- 

ions illustrated in [ 43 ], the heading angle ψ in the state vector 

hould be replaced by the course angle χ , since in the presence 

f an external force in the sway direction, the vessel will not be 

ble to attain zero tracking error for the heading angle. A nonzero 

ideslip angle will result regardless of the heading angle, but the 

esulting force component will counteract the sway disturbance 

hat would have happened had the sideslip angle been zero. Based 

n that, the state vector is rewritten by 

 = [ x e , y e , χe , x, y, u, v , r ] 
T 
, (25) 

here χe = χ − χr is the tracking error which considers the 

ideslip angle. 

.2.2. NMPC design 

By discretizing the continuous-time model in Eq. (23) , we ob- 

ain the dynamic system under the control of the proposed NMPC. 

s a result, we may express the desired control system’s discrete- 

ime model as: 

 

(
k + 1 

)
= f 

(
x 
(
k 
)
, u 

(
k 
)
, w 

(
k 
))

, (26) 

Here, the state x is comprised by the error and vessel dynamics, 

nd the input u is the input vector. 

Moreover, in contrast to existing LOS-based guidance strategies, 

he NMPC framework presented in this paper is able to consider 

hysical constraints of the mechanical system. We set low-level 

ontroller limitations on both velocity and the rate of change in 

urge and heading angle. Hence, the system should satisfy: 
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Fig. 8. Box-whisker plot of time cost. 

Fig. 9. Box-whisker plot of total distance. 
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(
k 
)

∈ U = 

{[
0 

−π

]
≤ u < 

[
u max 

π

]}

u = u 

(
k 
)

− u 

(
k − 1 

)
∈ U g = 

{
�u ≤

[
τu _ max 

τr _ max 

]}
. (27) 

Thus, nonlinear model predictive control (NMPC) is interpreted 

s the online acquisition of state feedback u (k ) via a least-squares 

LS) optimum control problem, whereby the objective function pe- 

alizes the amount by which the system’s inputs and states deviate 

rom their reference paths. It is expressed as: 

min 

 ( k ) , u ( k ) 
J N ( x , u ) = 

N−1 ∑ 

k =0 

� 

(
x 
(
k 
)
, u 

(
k 
))

+ F ( x ( N ) ) , (28) 
9 
.t. 

 

(
k + 1 

)
= f 

(
x 
(
k 
)
, u 

(
k 
)
, w 

(
k 
))

(29) 

 

(
k 
)

∈ U 

u ∈ U g 

 p min 
≤ T p ≤ T p max 

 s min 
≤ T s ≤ T s max 

 

(
x 
(
k 
)
, u 

(
k 
))

> 0 , ∀ x 
(
k 
)
, u 

(
k 
)
, 
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Fig. 10. Task distribution (a) Case 1; (b) Case 2; (c) Case 3; (d) Case 4. 

Fig. 11. Convergence history: the time costs for Case 1–4 are 8.82 s, 9.77 s, 11.02 s, and 11.34 s, respectively. 

10 
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Fig. 12. Planning results. 
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here � ( x ( k ) , u ( k ) ) is the stage cost function and F ( x ( N) ) is the

erminal cost function, N > 0 is the length of both the prediction 

nd control horizons. The stage and terminal cost are defined as: 

 

(
x 
(
k 
)
, u 

(
k 
))

= | x (k 
)

− x r 
(
k 
)| Q + | u 

(
k 
)| R (30) 

 ( x ( N ) ) = | x ( N ) − x r ( N ) | P . (31) 

Here J N is designed cost function, consists of the stage cost � 

nd the terminal cost F , the predictive horizon is denoted as N, 

 r (k ) and x r (N) are the reference states of the path and predicted

eference states, Q , R, and P are positive semidefinite weighing 

atrices. Control actions are penalized in order to discourage the 

pplication of high-energy, which could cause the system to be un- 

table. 

.2.3. Solver 

This paper uses the CasADi software to solve the NMPC problem 

28) subject to the restrictions given by (29). CasADi is a C ++ pro-

ram that can model and solve optimization problems with a great 

eal of flexibility, all while generating extremely efficient C ++ 

ode for real-time implementation and MATLAB executable (mex) 

les, used for simulation with MATLAB. It finds widespread use 

n fields like industrial control and robotics. In particular, nonlin- 

ar programming (NLP) solvers take a shooting-based approach to 

ynamic optimization. We use the direct single-shooting method 
11 
ince our investigations showed that the solution speed of the di- 

ect single-shooting approach is greater than that of the multi- 

hooting method when the number of prediction horizon steps is 

ess than 30. 

The solving process is illustrated as follows: 

Step 1 : Set number of sampling instants in the time prediction 

horizon N, and the sampling time T . 

Step 2 : Set weight matrices Q , R, P . 
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Fig. 14. Tracking results. 
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Table 1 

Setting of test instances. 

Instance Number of tasks Number of salesmen 

Eil51 51 3 

Berlin52 52 4 

Eil76 76 4 

Pr76 76 5 

Rat99 99 6 

Rat99 99 7 
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Step 3 : Set model constraints. 

Step 4 : Set state references x r (k ) , x r (N) . 

Step 5 : Get the current value x . 

Step 6 : Solve the NLP problem Eq. (28) , and take the optimal

control input vector [ u 0 , u 1 , u 2 , . . . , u N−1 ] and the pr e- 

dicted states [ x 0 , x 1 , x 2 , . . . , x N−1 ] . 

Step 7 : Apply the first element u 0 , and go to Step 5 . 

.2.4. Stability 

Despite numerous studies on the asymptotic stability of the 

MPC problem, creating acceptable conditions remains an unre- 

olved challenge that may make online optimizations more com- 

lex and time expensive to accomplish. Hence, we only discuss the 

tability concerning our model. According to a series of studies in 

 55–57 ], stability can be ensured for finite horizon problems under 

everal conditions. They are presented as following: 

1. u is compact, and x is connected and contains the origin in the 

interior of u × x . 

2. ∃ u ∈ U which makes f ( x r , u ) = x r . 

3. Objective function J should satisfy J( x r , u ) = 0 , from u ∈ U ob- 

tained from the second assumption. 

Because there are no further limitations on the states in our 

roblem, we may assume that the feasible set always has the ori- 

in in the interior via simple axis transformation. Typically, linear 

nequalities are chosen as control constraints, so u is a compact 

et. For the second assumption, it is easily checked by observing 

he USV system. The third assumption will be satisfied as long as 

he cost function J is the quadratic, as Eq. (30) . 
12 
. Results and discussion 

To evaluate the proposed strategy, several illustrative simula- 

ions are conducted progressively by global path planning, way- 

oint following, and the combination of the two modules. They are 

erformed via MATLAB R2021a environment with a PC that is con- 

gured with a 2.10-GHz Intel(R) Core (TM) i7–1260P processor and 

6.0-GB RAM. 

.1. Simulation: global task planning 

.1.1. Convergence test 

In this subsection, simulation studies and comprehensive com- 

arisons are provided to validate the convergence characteristic 

nd solution quality of GPGA in solving the global path plan- 

ing problem. In order to facilitate simulations, we conduct the 

erformance evaluation using classical instances from TSPLIB, see 

able 1 . To show the improvement effect of the novel strategies, 

ethods from existing references, including IPGA [ 58 ] and MOGA 

 59 ], are applied to solve the problem. For fair comparison, we run 
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Fig. 15. Path tracking under different model uncertainties. 

Table 2 

Comparison of time cost. 

Instance GPGA IPGA MOGA 

Eil51(3) 7.33 8.62 10.79 

Berlin52(4) 7.47 8.69 10.63 

Eil76(4) 8.21 9.74 10.55 

Pr76(5) 8.10 9.52 11.07 

Rat99(6) 10.23 12.21 13.79 

Rat99(7) 10.17 12.45 13.92 
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0 times on each instance and perform statistical analysis regard- 

ng time cost and solution optimality. It is worth to note that since 

e only need to test the convergence characteristic, heterogeneity 

s not considered. Therefore, the process of checking the USV-task 

atching relationship is skipped. 

The parameters are set as follows, the population number and 

teration are set as the same while other parameters are set by the 

est value according to [ 58 , 59 ]: 

• GPGA: M = 100 , T m 

= 4000 , mutation = 0.3, P le = 0 . 7 (probabil-

ity of local exploration). 
• IPGA: M = 100 , T m 

= 40 0 0 , mutation = 0.01. 
• MOGA: M = 100 , T m 

= 4000 , mutation = 0.3, the crossover

probability is adaptive. 

Computational results of GPGA and reference algorithms on the 

onvergence efficiency are shown in Fig. 8 and Table 2 . As de- 

oted in Table 2 , GPGA can solve the general MTSPs more quickly 

han the existing algorithms. With approximately 10% and 20% 

ower time cost compared to IPGA and MOGA, GPGA has shown 
13
ts low computational burden in the algorithm process. Compared 

o the MOGA, GPGA and IPGA are generally more computational 

fficiency because the complex crossover procedure and roulette 

heel selection are not performed, which significantly decreases 

he complexity. Moreover, compared to IPGA, our algorithm is su- 

erior since the mutation operation is much simpler but remains 

 high-level searching ability. As shown in Fig. 8 , the IQR (range 

f the box) of GPGA is smaller than the reference algorithms in 

ost cases (except for berlin52). The results indicate that the 

roposed method can achieve satisfactory computational stability 

esults. 

Table 3 presents the results of the compared algorithms on 

he six instances in terms of their solution optimality. As denoted 

y the best value (in bold), GPGA can optimally solve the MTSPs 

n the simulations. Compared to IPGA and MOGA, the proposed 

ethod yielded better results on the average and minimum dis- 

ance. This indicates that GPGA merits strong global searching abil- 

ty while preventing the local optimum effectively. This is con- 

ributed by the local exploration and mutation strategy. On the 

ne hand, local exploration generates better offspring than the par- 

nts by gathering the nearby tasks, which improves the popula- 

ion quality. On the other hand, the various mutation strategies 

an help the algorithm jump out of the local optimum, thereby 

ontributing to the global searching ability. In terms of stability, 

PGA has also shown better results in most cases (except for pr76), 

ee Fig. 9 . Note that the results of IPGA are somewhat inconsistent 

eil51 and pr76, the bound is large). We assume it is because the 

lgorithm has fallen into numerous local optimums and yielded di- 

erse results. 
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Table 3 

Comparison of the solution quality. 

GPGA IPGA MOGA 

Eil51 Avg (m) 468.87 Avg (m) 520.36 Avg (m) 500.07 

Best (m) 446.37 Best (m) 462.95 Best (m) 452.96 

SD (m) 16.04 SD (m) 27.73 SD (m) 29.11 

Berlin52 Avg (m) 8778.31 Avg (m) 9811.12 Avg (m) 9295.84 

Best (m) 7874.43 Best (m) 8609.51 Best (m) 8447.83 

SD (m) 583.04 SD (m) 615.22 SD (m) 505.17 

Eil76 Avg (m) 669.06 Avg (m) 806.02 Avg (m) 738.17 

Best (m) 625.37 Best (m) 717.20 Best (m) 642.34 

SD (m) 29.00 SD (m) 38.48 SD (m) 42.62 

Pr76 Avg (m) 131,362 Avg (m) 140,870 Avg (m) 137,452 

Best (m) 118,854 Best (m) 126,273 Best (m) 123,974 

SD (m) 8293.41 SD (m) 7142.23 SD (m) 7093.82 

Rat99 Avg (m) 1399.21 Avg (m) 1579.21 Avg (m) 1524.20 

Best (m) 1292.83 Best (m) 1398.24 Best (m) 1367.24 

SD (m) 48.27 SD (m) 64.38 SD (m) 63.66 

Rat99 Avg (m) 1445.21 Avg (m) 1604.12 Avg (m) 1553.50 

Best (m) 1344.34 Best (m) 1510.63 Best (m) 1408.62 

SD (m) 51.54 SD (m) 51.51 SD (m) 64.31 

Table 4 

Design of EMTSPs. 

Case Tasks count USV count Common tasks Exclusive tasks 

1 40 3 25 5 for each 

2 50 4 30 5 for each 

3 60 3 39 7 for each 

4 60 4 40 5 for each 

Table 5 

Parameters of the otter. 

Parameters Explanations Values Units 

M Mass 65 kg 

L Length 2 m 

B Beam 1.08 m 

N p number of propellers 2 –
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Table 6 

Maneuvering derivatives of the USV model. 

Inertial related Value Damping related Value 

m 11 85.28 d 11 −77.55 

m 22 162.50 d 22 −0.02 

m 33 41.45 d 33 −41.45 

Table 7 

Evaluation indexes of control performance of NMPC. 

Case IAE x (m) IAE y (m) 

Nominal 104.542 102.218 

10% model uncertainty + disturb 554.233 369.489 

20% model uncertainty + disturb 803.098 755.854 

Note: for convenience, we recorded the error with the sampling frequency of 1 Hz. 
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.1.2. Heterogeneous task planning 

In this subsection, to demonstrate the effects of the heterogene- 

ty of USVs, four cases of experiments for the comprehensive anal- 

sis are designed. All four EMTSPs are assigned in turn with task 

izes 40, 50, 60, and 70, and the common tasks and exclusive tasks 

re grouped according to Table. 4 . It is worth to note that all the

asks are randomly distributed in the 2-D workspace (100 ×100 m) 

here the simulations are carried out. Each USV departs from its 

ase station and returns after completing the assigned tasks. The 

arameter setting is the same as in Section 4.1.1 . 

The four EMTSPs are depicted in Fig. 10 . As denoted in the fig-

re, the common tasks, exclusive tasks for USV1, exclusive tasks 

or USV2, and exclusive tasks for USV3 and USV4 are marked with 

lack circles, blue triangles, magenta pentagram, red squares, and 

reen pentagram, respectively. 

The convergence history of the four cases is shown in Fig. 11 . As

enoted by the convergence curve and time cost measurements, 

he computational cost slightly increased compared to the previ- 

us results. This is caused by the checking and correction proce- 

ure. Nevertheless, the proposed algorithm can still find the opti- 

al solution without sacrificing computational efficiency. As indi- 

ated by Fig. 12 , all the USVs with exclusive functional types have 

uccessfully completed their corresponding tasks. The checking and 

orrecting of the USV-task matching relationship are performed af- 

er each genetic operation is completed, thereby ensuring no vio- 

ation of the matching requirements. This indicates that our pro- 

osed model can perfectly handle heterogeneous path planning. 
14 
.2. Simulation: waypoint following 

In this section, simulation results are presented to demonstrate 

he validity and assess the performance of the proposed NMPC 

or waypoint tracking of an unmanned surface vehicle. In order 

o show the advantage of the efficiency of our model, compara- 

ive studies are also conducted with the well-known path follow- 

ng method Integral line of sight (ILOS) [ 44 ] and the adaptive LOS 

ALOS) guidance [ 43 ]. The three methods are applied to the Ot- 

er surface vehicle, see Fig. 13 . The Otter unmanned surface vehi- 

le is a 2-[ m ]-long and 1.08-[ m ]-wide robotic platform developed 

y MARINE ROBOTICS ( www.marinerobotics.com ). The particulars 

nd mechanical properties are shown in Table 5 and Table 6 , re- 

pectively, and for more detailed information on the USV model, 

he readers are referred to the MSS toolbox ( https://github.com/ 

ybergalactic/MSS ). 

The parameters settings are expounded and explained here. 

he prediction horizon length is selected to be 30 s, the con- 

rol horizon is set as 2 s, and the sampling time is 0.1 s. 

 min = −3 m/s , u max = 3 m/s , r min = −0 . 1 rad/s , r max = 0 . 1 rad/s ,

 p max = T s max = 119 . 7 N, T p min 
= T s min 

= −66 . 7 N, u d = 1 . 9 m/s .

he weight matrices were selected based on a series of 

imulation tests: Q = diag( [ 0 . 5 , 0 . 5 , 2 , 0 , 0 , 30 , 0 , 0 . 1 ] ) , 

 = diag( [ 1 , 1 , 4 , 0 , 0 , 30 , 0 , 0 . 2 ] ) , R = diag( [ 0 . 0 01 , 0 . 0 01 ] ) . 

he weights on matrix Q and P were meant to penalize deviation 

rom the path and course angle, and failure to maintain the 

equired speed. Similarly, the weights on R penalizes aggressive 

hanges in the control signals, to achieve a smooth thruster signal. 

http://www.marinerobotics.com
https://github.com/cybergalactic/MSS
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Fig. 16. Angle and velocity profile (a) Nominal model; (b) 10% model uncertainty and disturbances; (c) 20% model uncertainty and disturbances. 

Fig. 17. Tracking results. 

15 
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Fig. 18. Angle and velocity profile (a) NMPC; (b) ALOS; (c) ILOS. 
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As denoted in Section 3.2 , the disturbances affecting the system 

an be due to different external sources, such as wind, waves, and 

urrents. In order to study the performance of NMPC under spe- 

ific environment disturbances, time-varying environmental distur- 

ances are employed on surge ( d 1 ), sway ( d 2 ), and yaw compo-

ents ( d 3 ), see the following equation and Fig. 14 : 

 1 = 1 . 5 sin t + cos 0 . 7 t 

 2 = 1 . 7 sin 1 . 3 t + 0 . 8 cos 0 . 8 t 

 3 = 1 . 2 sin 0 . 5 t + 1 . 3 cos 1 . 2 t. (26)

.2.1. Test 1: simulation under different model uncertainties 

In this subsection, we will test the robustness of the NMPC 

ith respect to the different level of model uncertainties. The test 

ases are threefold: (1) nominal model without disturbances and 

odel uncertainty; (2) model with disturbances and 10% model 

ncertainty; (3) model with disturbances and 20% model uncer- 

ainty. The model uncertainties of the Otter vehicle are 	M and 

D , which is randomly generated at each time within the uncer- 

ainty boundary. Therefore, the inertial matrix value and damping 

atrix value would vary according to the following equation at 

ach time step: 

 = M ± �M 

 = D ± �D . (27) 

In this simulation, we assume the boundary of the model un- 

ertainties are 	M ∈ ( 0 , 0 . 1 M ) and 	D ∈ ( 0 , 0 . 1 D ) for the 10%
16
ase, while M ∈ ( 0 , 0 . 2 M ) and 	D ∈ ( 0 , 0 . 2 D ) for the 20% case.

he reference path is designed as: 

 d = 6 . 25 ω + 50 sin ( 2 πω/ 40 ) 

 d = 8 . 75 ω − 0 . 05 ω 

2 , (28) 

here ω is the path parameter that is independent of time. The 

SV is originally positioned at x = 0 m , y = 0 m , while the ini-

ial point of the path is assumed to be ω = 0 and it ends at ω = 50 .

To analyze the results in more details, IAE (integrated absolute 

rrors) is employed to compare the steady-state and the transient 

esponse performance quantitatively. IAE of longitudinal and lateral 

osition can be defined as: 

AE x = 

∫ t 

0 
| x e ( ω ) | dω 

AE y = 

∫ t 

0 
| y e ( ω ) | dω, (29) 

here x e and y e is the tracking error in the longitude and lateral 

irection, respectively. 

The results are presented in Fig. 15 , wherein the reference path 

s depicted in blue, the trajectory of the nominal model is illus- 

rated in black, the model with 10% model uncertainty and dis- 

urbances is shown in red, and the green line indicates the model 

ith 20% model uncertainty and disturbances. The effectiveness of 

he proposed algorithm in handling model uncertainty below 20% 

s evident from Figs. 15 and 16 , where the USV successfully tracked 

he reference path with satisfactory results. The statistical analysis 

n Table 7 further confirms the performance of the algorithm, as 

videnced by the integrated absolute error of (104.542, 102.218), 

554.233, 369.489), and (803.098, 755.854) for nominal, 10%, and 

0% models, respectively. Although some fluctuations are observed 
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Fig. 19. Environment set. 
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or relatively large model uncertainty, the USV demonstrates satis- 

actory performance in tracking the desired path, highlighting the 

obustness of the proposed algorithm. 

.2.2. Test 2: comparative study with other methods 

The Integral line of sight (ILOS) [ 44 ] and the adaptive LOS 

ALOS) guidance [ 43 ] are implemented in combination with the 

tandard proven-in-use PID controllers: the Otter vehicle employs 

 PID heading autopilot. The determination of the coefficients is set 

ccording to [ 53 ]: K P = 53 . 42 , K D = 14 . 84 , K I = 14 . 84 , K F F = 74 . 2 ,

here K F F is the acceleration feed forward coefficient. The param- 

ters and disturbances are set as the same in Section 4.2.1 . More- 

ver, we choose the 10% model uncertainty in the comparative 
17
tudy. The reference path is designed as: 

 d = 6 . 25 ω + 250 cos ( 1 . 5 πω/ 40 ) − 0 . 05 ω 

2 

 d = 8 . 75 ω − 0 . 05 ω 

2 , (30) 

here ω is the path parameter that is independent of time. The 

SV is originally positioned at x = 0 m , y = 0 m , while the ini-

ial point of the path is assumed to be ω = 0 and it ends at ω = 50 .

A comparative simulation between the proposed NMPC and the 

ther references is shown in Fig. 17 and Table 8 . The reference path

s denoted by the blue dashed line, the trajectory of the NMPC is 

he solid black line, and ALOS and ILOS are represented by the red 

nd green line, respectively. As shown in Fig. 17 , It can be observed
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Fig. 20. Results of the global planning: (a) Path generation; (b) Path planned in the local frame; (c) Convergence history (time cost: 6.32 s). 

Table 8 

Evaluation indexes of control performance. 

Case IAE x ( E + 03 m) IAE y ( E + 03 m) 

NMPC + 10% uncertainty + disturb 1.7478 1.8453 

ALOS + disturb 2.4022 2.2544 

ILOS + disturb 2.7021 3.0882 

Note: for convenience, we recorded the error with the sampling frequency of 1 Hz. 
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hat the NMPC-based controller approaches the path and tracks the 

ath more directly, incurring smaller tracking errors. However, it 

hould be noted that the ALOS and ILOS methods exhibit a larger 

eviation from the reference path. This observation may be at- 

ributed to their comparatively weaker ability to reject external 

isturbances. Moreover, it cannot be overlooked that the subopti- 

al performance of the PID controller in the proposed framework, 

hich may potentially result from inappropriate parameter tuning, 

ould also have contributed to the observed discrepancies in track- 

ng accuracy. 
18 
Observing the signal curves in Fig. 18 shows that the true 

ourse angle corresponds well with the reference signal in the case 

f NMPC. The other methods have shown relatively large devia- 

ions, especially for ILOS. As to the speed, time history curves are 

ased on a constant design speed. It can be observed from the 

peed profile that NMPC yielded relatively stable velocity during 

he tracking, resulting in a smoother tracking performance. How- 

ver, the speed profile demonstrates that the vehicle experiences a 

eduction in speed whenever it comes into contact with significant 

requent deflections as a result of disturbances. 

.3. Simulation verification of the framework 

In this section, the combination of the two modules is finally 

erified in a systematic way. The simulation is conducted under 

he context of a real-world water monitoring mission. We adopted 

he artificial lake at Zhejiang University’s Zijingang Campus as the 

imulation site, see Fig. 19 . We present the results with the lo- 

al map, which has the origin of (120.076395 °E, 30.299465 °N) 
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Fig. 21. Results of the waypoint following: (a) USV trajectories in satellite map; (b) Tracking results of USV1; (c) Tracking results of USV2. 
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ccording to the satellite data. The local map has a maximum 

ength and breadth of 501.6 m and 254.8 m, respectively. 

As for the task distribution, 30 tasks are randomly distributed 

n the water environment, see Fig. 19 . We assume the two USVs 

re the same but equipped with different sensors, e.g., USV1 is 

quipped with a conductive temperature depth (CTD) collector 

hile USV2 carry the water collector, and these can be regarded 

xclusive tasks for the USVs. The common tasks are normal patrol 

issions that can be completed by both of the USVs. As denoted 

n Fig. 19 , the common patrol tasks, CTD tasks for USV1, and water 

ampling tasks for USV2 are marked with black circles, red trian- 

les, and green pentagrams, respectively. Each USV departs from its 

wn base station and returns after completing the assigned tasks. 

he parameters of GPGA, NMPC, and the USV system are the same 

s in the previous sections. 

The ability of the proposed framework to consistently address 

he EMTSP and path following problem is eventually evaluated by 

onducting simulations under real-world geographies. In general, 

he proposed GPGA can optimally address the EMTSP with com- 

aratively quick convergence performance. Fig. 20 presents the re- 
19 
ults of global path planning. As is shown in the figure, all the 

SVs with exclusive functional types have been successfully as- 

igned their corresponding tasks. This is directly in line with our 

revious findings. 

Fig. 21 shows the trajectories of the two USVs. It can be seen 

rom the figure that the USVs have successfully completed the mis- 

ions. With the aid of NMPC, the vehicles can autonomously reach 

ll the planned points with satisfactory tracking performance. This 

ndicates that the proposed framework can assist USV in perform- 

ng water monitoring missions. Moreover, environmental loads and 

uick turns cause the vehicle’s real trajectories to deviate slightly 

rom the planned straight lines. 

As to the tracking performance from the perspective of control, 

he USVs have shown rather satisfactory results in the path fol- 

owing mission. It is clear from comparing the two signal curves 

n Fig. 22 that the true heading angle matches well with the refer- 

nce signal. However, a relatively large deviation exists when the 

ehicle passes through the point where the course changes sig- 

ificantly (around 30 s in Fig. 22 . (a)). This is due to the sharp

urnings. For the speed profile, time history curves are based on 
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Fig. 22. Results of the tracking process: (a) Course angle and speed of USV1; (b) Thrust forces of USV1; (c) Couse angle and speed of USV2; (d) Thrust forces of USV2. 
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 constant design speed. Upon approaching the sharp turns, the 

urge speed was inconsistent. In spite of this, it remained close 

o the desired speed while following the course. Variations in the 

hruster signals reflected the vessel’s speed and direction as it 

urned. 

. Conclusion 

The work in this paper presents an insightful study that focuses 

n path planning and path following for USVs in water monitor- 

ng missions. The particular class of global path planning consisted 

f problems where it is necessary to consider the heterogeneity 

f the USVs/tasks to complete the mission. Moreover, the inher- 

nt USV physical constraints pose a great challenge in achieving 

obust path following. This article creates a systematical approach 

gainst global path planning and path following with characteris- 

ics such as global optimality, rapid convergence rate, and robust 

ontrol performance. From the corresponding results, it allows the 

ollowing conclusions to be drawn: 

• The presented results indicate the proposed EMTSP in combi- 

nation with GPGA can consistently address the heterogeneous 

task planning of multiple USVs, thereby contributing to the wa- 

ter monitoring missions with specific needs. 
• By utilizing the local exploration and greedy initialization, 

GPGA merits strong global searching ability and rapid con- 

vergence simultaneously. GPGA outperforms currently available 

combinatorial optimization approaches and provides improved 

solutions in all the problem variants. 
• Finally, reference targets can be properly tracked by virtue of 

the NMPC strategy, ensuring smooth maneuvering by respecting 
USV physical constraints. n

20 
Some limitations of the current study need to be addressed in 

uture work. 

• Obstacles and unexpected invaders might threaten USV safety 

and potentially cause mission failure. This paper only deals 

with path planning in an obstacle-free area. In the future, ef- 

ficient strategies can be applied to achieve obstacle avoidance. 
• The presented NMPC solves a highly nonlinear optimization 

problem at each sample period, necessitating a significant pro- 

cessing and time capacity. Utilizing a more practical technique 

that can build a simpler version of the model permits the ap- 

plication of quadratic programming algorithms, resulting in a 

quicker implementation. 
• The collision between the USVs is not considered. The authors 

are planning to design appropriate control strategies that could 

achieve coordination between the USVs. 
• Moreover, the algorithm will be implemented in ROS systems 

and applied to actual USVs in a real-world water monitoring 

case. 
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