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Route planning for autonomous vessels based on improved artificial fish swarm
algorithm
Liang Zhaoa, Fang Wangb and Yong Baia

aSchool of Civil Engineering and Architecture, Zhejiang University, Hangzhou, People’s Republic of China; bSchool of Information and Electrical
Engineering, Zhejiang University City College, Hangzhou, People’s Republic of China

ABSTRACT
Path planning is one of the key technologies in the research of autonomous surface vessels (ASVs). In this
paper, an improved artificial fish swarm algorithm (IAFSA) is proposed. The algorithm is modified from
four perspectives: (1) A directional operator is introduced to improve the efficiency. (2) To avoid local
optimum, a probability weight factor is proposed to adjust the frequency of executing random
behaviour. (3) An adaptive operator has been applied aims at better convergence performance. (4) The
waypoint modifying path smoother is used to improve the path quality. A comparative study has been
carried out between IAFSA and the other state-of-the-art algorithms, and the results indicate that the
proposed algorithm outperforms the others in both efficiency and path quality. Finally, IAFSA is
integrated into the GNC system in a model ship. A computer-based sea trial around the Nan Hai area has
been conducted, and environmental disturbances including wind, waves, and currents are considered.
The results have shown that IAFSA is suitable for practical application.
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1. Introduction

With the development of autonomy technology, there has been a
growing appeal for the research of autonomous systems. In particu-
lar, much attention is given to autonomous surface vessels (ASVs)
due to their potential benefits of improving safety and efficiency.
ASVs can be defined as unmanned ships which perform tasks in
a variety of cluttered environments without any human interven-
tion. ASVs have already shown their contributions in some areas
like ocean research, ocean resource exploration, military, maritime
transport and rescue (Zhou et al. 2020). Table 1 shows the examples
of ASVs’ applications in recent years.

Path planning is one of the key technologies in the process of
automating the ASVs and carrying out complex tasks of ASVs (Fos-
sen 2011; Lazarowska 2015). In recent years, there is an increasing
demand for maritime safe navigation and path planning technol-
ogy. According to the Annual Overview of Marine Casualties and
Incidents 2019 (EMSA 2019) collected by the European Maritime
Safety Agency (EMSA), during 2011–2018, more than 54% of all
accidents with ships were navigational accidents. Also, 65.8% of
these accidents were attributed to human actions. The high percen-
tage of navigational casualties and human erroneous actions can be
largely reduced by introducing path planning algorithms.

Developing path planning algorithms with great computing
efficiency, robustness, and higher-quality solutions is an attractive
topic in recent studies. Sang et al. (2021) proposed a multiple
sub-target artificial potential field (MTAPF) based on traditional
APF. TheMTAPF can greatly reduce the probability of USVs falling
into the local minimum by switching target points. Xie et al. (2019)
modified the A* algorithm by combining scalar mode, adaptive step
and penalty mode. Compared with the real-case trajectory, the dis-
tance to the obstacles increased more than three times and path
length is much shorter. Liang et al. (2020) proposed a leader-vertex
ant colony optimisation algorithm (LVACO) and applied it to the
ASV control system. Simulation results reveal that the route

given by the LVACO algorithm is more efficient and suitable for
ship navigation. Another attempt was made by Zhong et al.
(2021), they combined particle swarm optimisation with orien-
tation angle-based grouping. The modified algorithm showed better
performance in converging time and path length. To implement an
algorithm to ship autonomous navigation, Lazarowska (2020) used
a discrete artificial potential field method combined with COL-
REGs. The method was validated by using real navigation data
from the training ship Horyzont II. Guo et al. (2020) proposed a
chaotic and sharing-learning particle swarm optimisation
(CSPSO) algorithm to solve the multi-objective path planning pro-
blem. Simulation experiments validate that the CSPSO algorithm
and collision avoidance rules are effective and justifiable.

Furthermore, there is an increasing interest in considering
dynamic obstacles and multiple ASVs path planning. To cope
with dynamic obstacles, Lyridis (2021) improved the ant colony
optimisation (ACO) algorithm with the fuzzy logic method. The
path planner considered multi-objectives including travelled dis-
tance, path smoothness, and fuel consumption. By using a multi-
layer path planner, Wang et al. (2019) solved the ASV path
planning problem in complex marine environments including
dynamic obstacles and arisen reefs. The B-spline method and sto-
chastic dynamic coastal environment (SDCE) model is built to
adapt to the time-varying environments. A new path planning
algorithm based on self-organising map (SOM) and fast marching
method (FMM) has been proposed by Liu et al. (2019). The algor-
ithm has been verified through a number of multiple USVs simu-
lations and has been proven to work effectively in both simulated
and practical maritime environments. To solve the online relative
optimal path planning problem of multiple USVs, Wen et al.
(2020) improved rapidly extending random tree (RRT*) for path
optimisation. The dynamic obstacle avoidance has been investi-
gated based on COLREGs, and the algorithm was proved to be
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relatively easier to execute and lower in fuel expenditure than tra-
ditional schemes.

Artificial Fish Swarm Algorithm (AFSA) is a new bionic algor-
ithm imitating the social behaviour of fish in nature, which was
first brought by Qian et al. (2002). The algorithm has been used
to solve mostly robot or ground vehicle path planning problems
while there are very limited researches introducing its application
in autonomous vessels. Zhang et al. (2016) adopted the inertia fac-
tor to AFSA to improve the convergence rate and accuracy. The
experiments were carried out on Pioneer 3-DX mobile robot
based on a robot operation system (ROS). To ensure the unmanned
ground vehicle’s safety in an uncertain environment, Zhou et al.
(2021) combined trial-based forward search (TFS) with ASFA.
The experiment results have shown the storage efficiency and con-
vergence rate are sufficiently enhanced compared to dynamic
programming.

Through the literature review, we have observed a number of
limitations in recent studies. They are summarised as follows:

. Many algorithms that appear to be efficient theoretically are not
applied and tested in the ship control system, which means they
are not convincing in handling real-world situations (Vagale
et al. 2021; Table 2).

. In many cases, the simulations do not consider external disturb-
ances such as wind, waves, or currents (Table 2). The modelled
environment is not complete, and the performance of the algor-
ithms under real conditions would differ (Huang et al. 2020;
Vagale et al. 2021).

Route planning is defined as a macro-modality constraint path
planning problem which means its applications are usually in
large-scale environments (Zhou et al. 2020). In such circumstances,
the ship is assumed to be a particle and we do not consider its
specific size constraints and motion dynamics. The solution to
this problem is required to be collision-free and efficient in both
computing time and path length. Therefore, to cope with these
requirements and limitations, an improved IAFSA has been devel-
oped. The contributions of this work can be addressed in the fol-
lowing three aspects:

. An improved artificial fish swarm algorithm (IAFSA) is pro-
posed to achieve safe route planning for ASVs, which combines
a directional operator, probability weight factor, adaptive oper-
ator, and a path smoother to improve the efficiency and feasi-
bility of the algorithm.

. A competitive study between IAFSA and other state-of-the-art
algorithms is provided to illustrate the excellent performance
of the proposed algorithm.

. A simulation-based sea trial around the Nan Hai area by inte-
grating IAFSA with ship GNC system is carried out to prove
its feasibility in real-world situations. Ocean disturbances

including wind, waves and current are considered during the
trial.

The paper is organised as follows: Section 2 presents the method-
ology of IAFSA and its competitive results with other algorithms.
In Section 3, a computer-based sea trial around the Nan Hai area
has been conducted to present the application of IAFSA in the
real ocean environment. Conclusion is addressed in Section 4.

2. Methodology

2.1. Traditional AFSA for route planning

Artificial fish (AF) is a fictitious entity. The AF imitates the social
behaviours of real fish to find the position with the best food con-
centration. The algorithm consists of four behaviours: prey behav-
iour, follow behaviour, swarm behaviour and random behaviour.
The basic idea of these behaviours can be described as follows:

The total population of the fish is N, the position state of each
AF is X = (X1, X2, X3, . . . , Xn). Y = f (Xi) denotes the food con-
centration in the current position. Visual and Step is the maximum
range in which AFs can search and move.

2.1.1. Prey behaviour
A basic biological behaviour for fish to find food (Figure 1). The
current state of an AF is Xi(t). Xj(t) is the random position state
neighbouring the current AF in the range of visual, which can be
expressed as (1).

Xj(t) = Xi(t)+ Visual× rand(0, 1) (1)

If the food concentration Yi . Yj, the AF will take a Step in the
direction of Xj(t), which is done by

Xi(t + 1) = Xi(t)+
Xj(t)− Xi(t)

Xj(t)− Xi(t)
× Step× rand(0, 1) (2)

If Yi , Yj, then Xj(t) will be selected again. If the AF is not satisfied
with the forward condition after try num times, the concerned AF
performs random behaviour to avoid the local optimum.

2.1.2. Follow behaviour
Once an AF finds a better position, the neighbour AFs will
follow and reach it immediately (Figure 2). Suppose the current

Table 1. Examples of ASVs’ applications.

Field Applications
Scientific Research Marine biology studies (Katzschmann et al. 2018);

Bathymetric survey (Sato et al. 2015); water quality
monitoring (Yang et al. 2018)

Ocean Resource
Exploration

Oil, gas and mine explorations (Roberts and Sutton 2006;
Pastore and Djapic 2010)

Military Port, harbour and coastal surveillance (Zhao 2018); anti-
submarine (Fahey and Luqi 2016)

Other Applications Transportations and maritime rescue (Shafer et al. 2008;
Wilde and Murphy 2018)

Table 2. Lists of recent studies.

Research Method
Incorporating with

GNC system

Simulations
considering wind,
waves and currents

Sang et al.
(2021)

MTAPF No No

Xie et al.
(2019)

Improved multi-
direction A*
algorithm

No No

Liang et al.
(2020)

LVACO Yes Yes

Zhong et al.
(2021)

Improved PSO Yes Yes

Lazarowska
(2020)

Discrete APF No No

Guo et al.
(2020)

CSPSO Yes Yes

Lyridis (2021) Improved ACO No No
Wang et al.
(2019)

Improved FMM No No

Liu et al.
(2019)

FMM combining
SOM

No No

Wen et al.
(2020)

Improved RRT* No No
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position of AF is Xi(t), and position Xj(t) denotes the neighbour fish
with better food concentration in its visual scope. Swarm centre
Xc(t) is defined as the arithmetic average of all AFs’ states, see
Equation (4). nf is the number of AFs in the visual scope of the
swarm centre. d denotes the parameter denoting the level of crowds.
If Yj , Yi and nf /N , d, which means position Xj(t) has
better food consistency and is not crowded. Then, the AF
moves a step in the direction of Xj(t). The expression can be deter-
mined as (3)

Xi(t + 1) = Xi(t)+
Xj(t)− Xi(t)

Xj(t)− Xi(t)
× Step× rand(0, 1) (3)

if there are no neighbours to be found or the condition is not sat-
isfied, the AF will perform prey behaviour.

2.1.3. Swarm behaviour
In order to keep swarm generality, AFs attempt to move towards
the central position at every time of iterations, the swarm behaviour
is illustrated in Figure 3. The central position is determined in the
following equation:

Xc(t) = 1
N

∑N
i=1

Xi(t) (4)

nf is the number of AF swarms in the visual range of Xc(t). If
nf /N , d and Yc , Yi, it means the centre position has better
food consistency and the swarm is not crowded, then the AF can

take a step in the direction of Xc(t), which is done by

Xi(t + 1) = Xi(t)+ Xc(t)− Xi(t)
Xc(t)− Xi(t)

× Step× rand(0, 1) (5)

Otherwise, the AF executes prey behaviour.

2.1.4. Random behaviour
To prevent local optimum, the AF would execute random behav-
iour if the other behaviours are failed to execute. Random behav-
iour means the AF chooses an arbitrary state or position
randomly in its visual field, and then it swims towards the selected
state. It can be described as follows:

Xi(t + 1) = Xi(t)+ Step× rand(0, 1) (6)

2.2. The improved artificial fish swarm algorithm

2.2.1. Directional operator and probability weight factor
In traditional AFSA, before moving to the next position, AF
usually searches for the next state randomly in the range of its
visual. There are some drawbacks to this process. First, it is a
time-consuming task. AF needs to try all the possible directions
until the position is found. Second, the path generated by
the prey behaviour is not optimal. Due to the random
process, the path quality is greatly influenced by the
jagged effect (existence of redundant turns that form like a
zigzag).

To overcome these drawbacks, we introduce a heuristic direc-
tional operator. During the prey behaviour, the AF is inspired by
the operator and consciously chooses the best position by itself.
Suppose that Xp

i,j represents the potential position number j of AF
number i in the step range. P represents the set of all the potential
position, which can be expressed as

P = {Xp
i,j|Xp

i,j − Xi ≤ Step, i = 1, 2, 3, . . . , N, j = 1, 2, . . . , M}

(7)

In prey behaviour, the food concentration of all the potential pos-
itions in P is calculated and then the best position Xp

i,best is
selected to be the next step, see Equations (8) and (9). The direc-
tional operator first guarantees the AF can find the best position
with one cycle of calculation, which significantly reduces the
computing time. Second, the directional operator replaces the
random process; thereby, the redundant turns and unnecessary

Figure 1. Illustration of prey behaviour. (This figure is available in colour online).

Figure 2. Illustration of follow behaviour. (This figure is available in colour online).

Figure 3. Illustration of swarm behaviour. (This figure is available in colour online).
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nodes are reduced.

Xp
i,best = min{f (Xp

i,1), f (X
p
i,2), f (Xp

i,3), . . . , f (Xp
i,M)} (8)

Xi(t + 1) = Xi(t)+
Xp
i,best(t)− Xi(t)

Xp
i,best(t)− Xi(t)

× Step× rand(0, 1) (9)

However, after eliminating the random process, the adaptability
of the AFSA is weakened. The algorithm is easier to get into local
optimum. In order to compensate for it, we introduce a probability
weight factor m, which follows the Bernoulli distribution. There-
fore, the AF will execute random behaviour to jump out of the
local optimum at a certain frequency. Equation (9) is rewritten as
(10).

Xi(t + 1) =
Xi(t)+

Xp
i,best(t)− Xi(t)

Xp
i,best(t)− Xi(t)

× Step× rand(0, 1), m = 0

Xi(t)+
Xj(t)− Xi(t)

Xj(t)− Xi(t)
× Step× rand(0, 1), m = 1

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

(10)

2.2.2. Adaptive factor
In standard AFSA, the visual and step are fixed. At the beginning of
the algorithm, large values of visual and step leads to better conver-
gence speed. However, when AFs move close to the final position,
the large values will cause problems such as local optimum or itera-
tive jumps. But if the values are too small, the efficiency is
decreased. Therefore, the algorithm has specific requirements on
the size of visual and step in different stages. To balance the global
search ability and convergence rate, an adaptive factor is
introduced.

Suppose N is the total number of AFs, each AF is recorded as
Fi(i = 1, 2, 3, . . . , N). And Dij denotes the distance between
two AFs Fi and Fj. The weight factor of the distance Dij is vij.
Therefore, the visual can be calculated by the weighted average
method:

Vi =

∑N
i=1, i=j

Dij × vij

∑N
i=1, i=j

vij

(11)

From Equation (11), we can see the large visual value in the
beginning stage will lead AFs move towards positions quickly
and make them gathering. As the calculation continues, the visual
is gradually getting smaller, which improves the efficiency of
searching.

Step is another vital parameter which determines the accuracy of
the algorithm. Large step means low accuracy, conversely, small
step will improve the accuracy but lead to more time cost. To bal-
ance the accuracy and iteration speed, an adaptive step is

introduced as (12).

Step = Step× 1− i
MaxIter

( )
(12)

i denotes the current iteration and MaxIter is the total iterations.
From (12), the step is relatively large and the convergence speed
is fast at first. As the iteration process, the step gradually gets smal-
ler which leads to an accurate solution.

2.2.3. Waypoint modifying path smoother
The result of traditional method usually contains jags and
unnecessary waypoints. Closely placed waypoints and turns will
generate extra control demand, which could lead to degraded track-
ing performance. The path dose not suitable for ship navigation in
reality. Therefore, further smoothing method is required. To

Figure 4. Illustration of waypoint modifying path smoother. (This figure is available in colour online).

Figure 5. Flow chart of IAFSA. (This figure is available in colour online).
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overcome this problem, waypoint modifying path smoother
(WMPS) has been adapted.

The method is divided into two steps. (1) Remove the adjacent
points if they are colinear. (2) Remove the unnecessary turns if
the path does not pass the obstacles. For each iteration, the
WMPS checks all waypoints in consecutive three groups: the cur-
rent waypoint denoted as A; the next via waypoint of A denoted
as B; B’s via waypoint denoted as C. Figure 4 illustrates how it
works. The number of waypoints is reduced and jags are being
avoided after modifying. The path generated by WMPS can provide
optimum number of waypoints to achieve better control perform-
ance for ASV.

The flow chart of Improved artificial fish swarm algorithm is
shown in Figure 5.

2.3. Simulation results

This section presents the results of the computer simulations. To
verify the effectiveness of IAFSA, four scenarios of grid maps are
used and several other algorithms are compared in the simulations.

Both starting parameters of IAFSA and AFSA are set to be the same,
therefore ensuring the same initial condition. The parameters of
ACO are set according to Liang et al. (2020), and we also compare
the D* lite algorithm which is presented by Koenig and Likhachev
(2005). The simulations are conducted via MATLAB environment
with a PC configured with Intel (R) Core (TM) i7-8700 CPU and 8-
GB RAM. Moreover, to eliminate the randomness of the algor-
ithms, it should be noted that 100 runs are conducted to obtain a
dataset of each scenario.

Figure 6 demonstrates the generated paths by the five algorithms
in 10 × 10 and 20 × 20 grid maps, respectively. Quantitative results
are presented in Table 3, the average value of path length (pixels),
the best value of path length (pixels), standard deviation (SD)
and average time-consumption (s) are included. It is worth men-
tioning that the time cost and path length are key factors to
reflect the effectiveness and they are presented in bold. Further-
more, the SD, which is defined by Equation (13), reflects the depar-
ture degree of dataset from the average, and it is a vital index to
evaluate the algorithm’s robustness. The best value of the path
length generated by IAFSA is presented in bold. Figure 7 presents

Figure 6. (a) Simulation results of scenario 1; (b) simulation results of scenario 2; (c) simulation results of scenario 3; and (d) simulation results of scenario 4. (This figure is
available in colour online).
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the competitive results between different methods.

SD =
























1
100

∑100
i=1

(Li − AVG)2

√√√√ (13)

Overall, the IAFSA have relatively better performance than the
others in all the scenarios. As can be seen from Figure 6, IAFSA
achieved better solutions in terms of path quality. The lines in
blue and green are the paths generated by AFSA and ACO, and a
number of zig zags are formed, making it hard for practical use.
However, the line in red is obtained by IAFSA, and it gives the
routes with fewer waypoints and unnecessary turns, which is
more suitable for ASV navigation.

As is shown in Table 3, regarding the length of the generated
path, IAFSA gives the optimal in all cases. In particular, the path

length is 10–20% shorter in each scenario compared with the con-
ventional AFSA. The shortest path is obtained with the value of
13.9, 15.07, 30.38 and 28.63 pixels, respectively. Also, the superior
robustness of IAFSA was shown from the SD values of 0.39, 0.46,
0.45, and 0.49 pixels. Meanwhile, the time consumption is signifi-
cantly reduced due to the directional operator and adaptive oper-
ator with the value of 0.46, 0.60, 1.59, and 1.46 s, respectively. In
particular, we can observe from the table that the average time
cost is almost half of the other algorithms in scenarios 3 and 4.

Figure 7 presents the competitive results of the algorithms. As is
shown in Figure 7(a), the proposed algorithm achieved better per-
formance in terms of computational time, especially in complex
environments such as scenarios 3 and 4. We can also observe that
the efficiency of D* lite and IAFSA are relatively close in scenarios
3 and 4. As for the number of waypoints, the waypoints given by
IAFSA are significantly less than other competitive algorithms
according to Figure 7(b).

3. Computer-based sea trial on GNC system

In this section, the IAFSA is applied to the GNC system in a model
ship (Figure 8). The model ship is equipped with a Class 3 DP sys-
tem to accomplish the mission. It is driven by 8 diesel generators
and 12 thrusters. The mathematical model is designed according
to Fossen (2011), see Equations (14) and (15).

ḣp = y

Mv̇+ Dv = RT(c)b+ t+ ten

ḃ = 0

(14)

where

t = Bu (15)

In this model, hp denotes the position vector in vessel parallel coor-
dinates. M and D are mass matrix and damping matrix. The bias
vector b is the slowly varying ocean currents, and RT(c) is the trans-
fer matrix between NED coordinate system and body-fixed coordi-
nate system. ten denotes the environmental forces. The control
matrix B describes the thruster configuration while u is the control
input vector. It is worth mentioning that the mathematical model is
available under the assumption that the vessel moves at a relatively
low speed (Fossen 2011).

The configuration of the GNC system in the model ship is illus-
trated in Figure 9. It contains three basic systems: the guidance sys-
tem, navigation system and control system. The mission
requirement and information about the environment are first
sent to the guidance system to generate a map. Then, IAFSA will

Table 3. Performance comparison between different methods for four scenarios.

Method Results Scenario 1 Scenario 2 Scenario 3 Scenario 4
IAFSA AVG L (pixels) 14.06 16.26 31.56 30.26

Best (pixels) 13.89 15.07 30.38 28.63
SD (pixels) 0.39 0.46 0.45 0.49
AVG T (s) 0.46 0.60 1.59 1.46

AFSA AVG L (pixels) 16.61 17.86 38.97 37.75
Best (pixels) 15.07 16.24 35.07 31.80
SD (pixels) 0.72 1.00 1.62 1.57
AVG T (s) 0.68 0.73 2.23 2.31

ACO AVG L (pixels) 16.84 16.60 32.97 32.07
Best (pixels) 15.07 15.07 30.97 29.21
SD (pixels) 0.94 0.82 0.95 1.19
AVG T (s) 0.68 0.65 3.14 3.11

A* AVG L (pixels) 18 18 38 38
Best (pixels)
SD (pixels) – – – –
AVG T (s) 0.99 1.11 3.83 4.04

D* lite AVG L (pixels) 13.89 15.66 30.97 28.63
Best (pixels)
SD (pixels) – – – –
AVG T (s) 0.67 0.90 1.71 1.49

Figure 7. (a) Comparison of computational time; (b) comparison of waypoint num-
ber. (This figure is available in colour online).

Figure 8. Model ship. (This figure is available in colour online).
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Figure 9. GNC structure of model ship. (This figure is available in colour online).

Figure 10. (a) Satellite map of the sea trial site around Nan Hai area; (b) map after grid process (100 × 100 grid cells, 1 grid cell column length = 22.3 m and row length =
33.5 m). (This figure is available in colour online).

Table 4. Parameter settings.

Parameters Value
Environment parameters Wave Hs 1.5 m

Wave Tp 14 s
Wind speed 10 m/s
Current speed 0.1 m/s

Vessel dynamics Max speed 0.5 m/s
Max turn 5°/s
Max power 11,000 kW

Table 5. Waypoint information.

Waypoint Coordinate (m)
Start position (1038.5, 512.9)
Waypoint No. 1 (2613, 1561)
Waypoint No. 2 (2881, 1561)
Waypoint No. 3 (3015, 1650.2)
Goal position (3216, 1650)

Figure 11.Waypoints and reference trajectory generated by guidance system. (This
figure is available in colour online).

SHIPS AND OFFSHORE STRUCTURES 7



compute a set of waypoints which is a collision-free route for the
mission. According to the waypoints and vessel dynamics, the gui-
dance system calculates the reference trajectory and velocity. The
reference trajectory is further received by the control system,
which includes a PID controller and a thrust allocation system to
generate the control commands. The navigation system employs
a GPS and gyroscopic compass to measure the position and velocity
information. To improve the accuracy of the signal, an extended
Kalman filter is designed to refine the signal collected by the
sensors.

Sea trials have been carried out in a real sea environment around
the Nan Hai area in southern China, and the environment map is
shown in Figure 10(a). The start and goal positions have been
manually selected (Figure 10(b)). To complete the environment
model, it is worth mentioning that the vessel is exposed to environ-
mental disturbances including wind, waves and currents. Also, the
vessel dynamics constraints are considered to simulate the real situ-
ation. These parameters are shown in Table 4. Once all the par-
ameters are set, the guidance system will first start the offline
path planning process to generate waypoints for the mission
(Table 5 and Figure 11). And then, the sea trial begins, and the
vessel starts at the beginning coordinate (1038.5, 512.9 m) which
is marked as a green dot in Figure 10(a). It continuously generates
control signals by calculating the error between reference states and
actual states observed by the navigation system. After receiving the
control input, the thrusters would execute the signal and output
forces and moments to follow the route.

Overall, the GNC system with IAFSA has excellent performance
executing the sea trial. The vessel autonomously follows the route
without any human intervention. Figure 11 and Table 5 present
the waypoint coordinates and reference trajectory generated by
the guidance system. It is shown in Figure 11 that the route is
smooth with three waypoints totally, which makes the trajectory
easier to track. Figure 12 shows the simulation results of the
model ship; the blue curve is the reference trajectory while the

Figure 13. Deviation between real trajectory and reference trajectory. (This figure is
available in colour online).

Figure 12. Ship trajectory during the simulation. (This figure is available in colour
online).

Figure 14. Velocity recorded during the simulation. (This figure is available in colour online).
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red circles along this blue curve denote the trace of the model ship.
We can see these two elements are basically overlapped on each
other. Since it is hard to see the differences between reference
route and real trajectory from Figure 12, we present Figure 13 to
illustrate the control deviation. As can be seen from the figure,
the signal of the tracking error is less than 0.4 m, which means
the deviation of the ship’s trajectory from the planned path is
small even under the effects of environmental disturbances.
Additionally, Figure 14 demonstrates the velocity changes during
the trial. The blue curve is the velocity signal refined by an extended
Kalman filter. The green curve is the reference velocity signal gen-
erated by the guidance system while the red curve is the actual vel-
ocity. As can be seen from the curves, the vessel is moving at a
relatively low speed (0.5 m/s), which is conform to the maximum
speed settings. Besides, Figure 14 shows the excellent performance
of the navigation system and control system. It can be observed that
a relatively large deviation exists when the vessel changed direc-
tions. The reason for this is that the thrust forces changed drasti-
cally to turn the direction. Overall, the tracking deviation of
velocity and position is very small, which means the three subsys-
tems are synchronising well with each other. Therefore, the results
of the sea trial provide strong evidence that IAFSA is compatible
with the ship control system in the real ocean environment.

4. Conclusion

In this paper, an improved artificial fish swarm algorithm has been
proposed, verified and validated by a set of simulations. The algor-
ithm is designed to improve the efficiency and feasibility of path
planning of autonomous vessels. Compared with other state-of-
the-art algorithms, IAFSA outperforms the others in both algor-
ithm efficiency and path quality. Besides, the path given by
IAFSA has fewer unnecessary waypoints and is more suitable for
ship navigation. Meanwhile, the IAFSA has been integrated into
the GNC system of our model ship. The computer-based sea trials
under the disturbances including wind, waves, and currents verify
its feasibility in practical application.

In terms of the future work, two main issues can be addressed as
follows: (1) Considering the path planning in a dynamic environ-
ment. In a real situation, there could be potential danger occurring
during the voyage. This requires the ASVs to cope with the time-
vary environment. (2) Implementation of practical ASV. The com-
puter-based sea trial was conducted successfully in this study. How-
ever, to further prove its feasibility in practical application,
experiments on real ASV are still needed in the future.
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